Final Report

PHASE I SITE ASSESSMENT
GILBERT & BENNETT
GEORGETOWN, CONNECTICUT

Prepared For
Gilbert & Bennett Limited Partnership
Georgetown, Connecticut

March 1994
Project # 1835-05-0
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>iii</td>
</tr>
<tr>
<td>1.0 EXECUTIVE SUMMARY</td>
<td>1-1</td>
</tr>
<tr>
<td>2.0 INTRODUCTION</td>
<td>2-1</td>
</tr>
<tr>
<td>2.1 Purpose and Scope</td>
<td>2-1</td>
</tr>
<tr>
<td>2.2 Background</td>
<td>2-2</td>
</tr>
<tr>
<td>3.0 SITE OVERVIEW</td>
<td>3-1</td>
</tr>
<tr>
<td>3.1 Physical Setting</td>
<td>3-1</td>
</tr>
<tr>
<td>3.2 Geologic Setting</td>
<td>3-4</td>
</tr>
<tr>
<td>3.2.1 Bedrock Geology</td>
<td>3-4</td>
</tr>
<tr>
<td>3.2.2 Surficial Geology</td>
<td>3-4</td>
</tr>
<tr>
<td>3.3 Environmental Classifications</td>
<td>3-5</td>
</tr>
<tr>
<td>3.4 Site History</td>
<td>3-5</td>
</tr>
<tr>
<td>4.0 REGULATORY COMPLIANCE HISTORY</td>
<td>4-1</td>
</tr>
<tr>
<td>4.1 Regulatory Identification</td>
<td>4-1</td>
</tr>
<tr>
<td>4.2 Permits</td>
<td>4-1</td>
</tr>
<tr>
<td>4.3 Documented Releases and Enforcement History</td>
<td>4-2</td>
</tr>
<tr>
<td>4.4 Underground Storage Tanks</td>
<td>4-4</td>
</tr>
<tr>
<td>4.5 Inspection Files</td>
<td>4-6</td>
</tr>
<tr>
<td>4.5.1 State Records</td>
<td>4-6</td>
</tr>
<tr>
<td>4.5.2 Town Records</td>
<td>4-7</td>
</tr>
<tr>
<td>4.6 Independent Database Search</td>
<td>4-8</td>
</tr>
<tr>
<td>5.0 SITE WALK-OVER</td>
<td>5-1</td>
</tr>
<tr>
<td>5.1 Introduction</td>
<td>5-1</td>
</tr>
<tr>
<td>5.2 General Issues</td>
<td>5-1</td>
</tr>
<tr>
<td>5.3 USTs</td>
<td>5-2</td>
</tr>
<tr>
<td>5.4 Strand Galvanizing Areas</td>
<td>5-5</td>
</tr>
<tr>
<td>5.5 Fabric Galvanizing Areas</td>
<td>5-5</td>
</tr>
<tr>
<td>5.6 Reverse Twist Building</td>
<td>5-6</td>
</tr>
<tr>
<td>5.7 Welding Area</td>
<td>5-6</td>
</tr>
<tr>
<td>5.8 Weaving Building</td>
<td>5-7</td>
</tr>
<tr>
<td>5.9 Maintenance Building</td>
<td>5-7</td>
</tr>
<tr>
<td>5.10 OMSA Building</td>
<td>5-8</td>
</tr>
<tr>
<td>5.11 Laboratory</td>
<td>5-8</td>
</tr>
<tr>
<td>5.12 Blacksmith/Carpenter/Paint Shop</td>
<td>5-9</td>
</tr>
<tr>
<td>5.13 Boiler Rooms</td>
<td>5-9</td>
</tr>
<tr>
<td>5.14 New Warehouse</td>
<td>5-9</td>
</tr>
<tr>
<td>5.15 Lift Truck Garage</td>
<td>5-10</td>
</tr>
<tr>
<td>5.16 Neutralizing Tank</td>
<td>5-10</td>
</tr>
<tr>
<td>5.17 PCB Transformers Storage and Spill Location</td>
<td>5-11</td>
</tr>
<tr>
<td>5.18 Waste Oil Storage Area</td>
<td>5-11</td>
</tr>
<tr>
<td>5.19 CSAs</td>
<td>5-11</td>
</tr>
<tr>
<td>5.20 Mill Yard Areas</td>
<td>5-12</td>
</tr>
<tr>
<td>5.21 Main Parking Area</td>
<td>5-13</td>
</tr>
<tr>
<td>6.0 CONCLUSIONS AND RECOMMENDATIONS</td>
<td>6-1</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS (Continued)

LIST OF TABLES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4-1</td>
<td>Underground Storage Tank Status</td>
<td>4-4</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Description</th>
<th>Following Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-1</td>
<td>Site Location Map</td>
<td>2-1</td>
</tr>
<tr>
<td>3-1</td>
<td>Wetlands Map</td>
<td>3-2</td>
</tr>
<tr>
<td>3-2</td>
<td>Groundwater Classification Maps</td>
<td>3-5</td>
</tr>
</tbody>
</table>

LIST OF APPENDICES

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>NPDES Permit</td>
</tr>
<tr>
<td>B</td>
<td>PCB Documentation (Manifests, Consent Agreement)</td>
</tr>
<tr>
<td>C</td>
<td>UST - Analytical Results</td>
</tr>
<tr>
<td>D</td>
<td>EDR Report</td>
</tr>
<tr>
<td>E</td>
<td>Site Photographs</td>
</tr>
</tbody>
</table>

LIST OF DRAWINGS

<table>
<thead>
<tr>
<th>Drawing</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheet 1 of 3</td>
<td>Site Plan</td>
</tr>
<tr>
<td>Sheet 2 of 3</td>
<td>Facility Map</td>
</tr>
<tr>
<td>Sheet 3 of 3</td>
<td>Facility Map</td>
</tr>
</tbody>
</table>
PREFACE

This information has been published for the sole use of Gilbert & Bennett Limited Partnership (G&BLP). Use of this report by any other persons or entity is unauthorized except where the written consent of Malcolm Pirnie, Inc. is obtained prior to the use of the report. The conclusions in this assessment may have been based, in part, on information provided by employees or agents of the Gilbert & Bennett Manufacturing Company (G&B), the former owner of the site, or third parties including state or local employees. Independent verification of accuracy or completeness is not included in the scope of services. As such, Malcolm Pirnie, Inc. is not responsible for the accuracy of such information, estimates or opinions received from G&B's agents or third parties.

Where visual observations relating to hazardous materials in the environment at the subject site are included in the report, such observations only represent conditions at the time of the assessment. The information set forth in this report is, except as otherwise noted, representative of on-site conditions August 10 - 12, 1993. Malcolm Pirnie, Inc. makes no warranties that these observations are representative of historic or future conditions at the site.
1.0 EXECUTIVE SUMMARY

Malcolm Pirnie, Inc., conducted a Phase I Site assessment of property owned by Gilbert & Bennett Limited Partnership (G&BLP) in the village of Georgetown, Town of Redding, Connecticut (Site). The assessment included a Site visit, a review of local, state, and federal files and documentation of Site history. The purpose of the Phase I Site Assessment is to determine the environmental condition of the Site and the potential existence of oil petroleum, hazardous substances or materials or hazardous waste releases to soil and/or groundwater.

The Site was operated as a metal wire manufacturing facility by the Gilbert & Bennett Manufacturing Company (G&B) from the late 1800's through 1989 when manufacturing activities ceased. It is currently the corporate headquarters for G&B. Route 107 bisects the property, with the former manufacturing area to the north and the former facility wastewater treatment clarifier and by-product management area to the south. The former manufacturing property located to the north of Route 107 is owned by G&BLP and is the subject of this investigation. The property to the south of Route 107, is a separate parcel (the By-Product Management Area) owned by G&B and is not included under this investigation. The Site consists of an approximate 44 acre parcel located at North Main Street in Georgetown, Connecticut. The Site and surrounding properties lie along the Norwalk River Valley flood plain.

Investigations currently being performed at the Site area include a RCRA Facility Assessment (RFA) and RCRA Container Storage Area (CSA) Closure Plan. These concurrent investigations are being performed per a Consent Agreement and Final Order entered into by the United States Environmental Protection Agency (USEPA) and G&B. The RFA includes: collecting information on potential releases of hazardous waste/constituents; identifying areas of concern, solid waste management units and regulated units from which releases may have occurred; identification and evaluation of releases to any media; determination of the existence of releases of concern and a proposal for interim measures if necessary, to address the releases of concern. The purpose of the CSA Closure Plan, and investigations are to determine the extent of and remediate contamination, resulting from hazardous waste storage at eight CSAs.
While still active, the Gilbert & Bennett Manufacturing Company discharged non-contact cooling water, cooling water and treated process water to the river. These discharges were regulated by the Connecticut Department of Environmental Protection (CTDEP) under Gilbert & Bennett Manufacturing Company's NPDES permit. Since the manufacturing activities have ceased on the Site, no production related discharges are released to the Norwalk River. Sanitary wastes were formerly and are currently discharged through on-site septic systems consisting of septic tanks and leaching fields. Stormwater runoff is collected by catch basins and is routed to the Norwalk River. Water is currently supplied by a bedrock well located behind the office building. Four other bedrock wells were formerly used during active manufacturing prior to 1989. River water was also used on-site for production process water following chlorination. A total of fifteen underground storage tanks (USTs) located on-site have either been filled and abandoned or removed.

Groundwater beneath the Site and surrounding area has been classified by the CTDEP as GAA and GA. Just south of the Site in the By-Product Management Area the groundwater classification is GB. The GAA and GA classification indicates that the groundwater quality is presumed suitable for direct human consumption without need for treatment and the groundwater recharges public water supply wells. The surface water classification for the Norwalk River is "B". This classification allows for permitted discharges including cooling water discharges, discharges from municipal and industrial wastewater treatment systems.

The Gilbert & Bennett Manufacturing Company facility was considered a RCRA treatment, storage, and disposal facility by the USEPA and had a USEPA Identification Number of CTD001162775. The By-Product Management Area south of the Route 107 overpass, which is not part of the Site, is subject to RCRA Closure and Post-Closure in accordance with 40 CFR 265 and Connecticut Hazardous Waste Management Regulations presented in Section 22a-449(c)-105. As previously discussed, eight CSAs are currently subject to RCRA closure on the Site.

The Site was issued an NPDES permit in 1989 allowing for nineteen active discharges including non-contact cooling water, contact cooling water and treated process wastewater from the facility's wastewater clarifier.

The Site has experienced documented discharges into the environment. These discharges included spills in the Waste Oil Storage Area, from a PCB transformer at the
main sub-station and miscellaneous fuel oil spills. USTs have been removed or abandoned in place, however, post-excavation samples from areas surrounding the former USTs indicate residual indicator constituents may remain in the soil at some locations. Information on potential on-site disposal activities has also been provided to the CTDEP by third parties based on a review of CTDEP file information. Potential discharges to the environment at the Site are currently being investigated under the RFA.

The facility is no longer in operation and has undergone substantial decommissioning. Many of the buildings have deteriorated since manufacturing ceased in 1989. Specific observations noted during on-site inspection include:

- Probable asbestos insulation and paint which may contain lead were noted throughout the Site. The identification of friable asbestos and a lead paint abatement program were not within the scope of this assessment, but should be addressed in future programs.

- In the galvanizing areas, it is presumed that incidental releases have occurred and particulates from the processes have settled in some of these areas based on the presence of process materials and dust, and on the age and poor integrity of the floors.

- The Reverse Twist, Welding Building and Weaving Building were the sources of incidental or sporadic releases of hydraulic oils through floor drains. Also, sporadic or incidental releases may have occurred outside the Weaving Building due to the presence of a paint tower and a storage shed for paint lacquer.

- Incidental releases of solvents, oils, roofing tar, and paints from the Maintenance Building may have occurred based on the nature and longevity of activities in this building and the presence of a stained dirt floor in a portion of the building. However, the concrete basement floor area currently occupied as the Maintenance Shop, is in good condition.

- In the Boiler Rooms, potential releases of boiler chemicals or oils may have occurred through floor drains, trenches, or fill pipes based on the presence of stains and the poor integrity of the floor.

- In the Lift Truck Garage, a floor drain and former waste oil UST were pumped clean, washed and filled with concrete.

- Potential releases may have occurred outside of the Neutralization Tank because of the presence of visible iron-staining in and around the river channel adjacent to the tank.
The Mill Yard Area and Main Parking Area are the subject of unsubstantiated reports on the use of process residues as fill materials. In addition, these areas have not always been paved. Consequently, raw materials and process residues from material handling and storage, and particulates from process emissions may have accumulated in the underlying soils.

USTs and excavated contaminated soils removed from other areas on-site were temporarily stored outside of the New Warehouse. These areas may represent the site of potential releases associated with the UST and contaminated soils.

The condition of the remaining buildings was good compared to some of the older buildings. In general, the floors were intact, except for a few construction seams and a few stains on the floor.

Anywhere on the Site where materials or wastes were stored, may have been subject to potential releases. The migration pathways for these potential releases would typically have been through storm drains or the ground and eventually the Norwalk River. The RFA will address the potential for release associated with these activities. The Norwalk River was the ultimate receptor of NPDES discharges, incidental spills from trenches, floor drains, septic systems and groundwater discharges. Surface water and sediment quality of the Norwalk River are being investigated under the RFA.
2.0 INTRODUCTION

2.1 PURPOSE AND SCOPE

Malcolm Pirnie, Inc. (Pirnie) conducted a Phase I Site Assessment of the former Gilbert & Bennett Manufacturing Company facility located on North Main Street, Georgetown, Connecticut in the Town of Redding (Site). The Site is shown on Figure 2-1. The Phase I Site Assessment was performed in accordance with the CTDEP Transfer Act Site Assessment (TASA) Guidance Document. The purpose of the Phase I Site Assessment is to determine the environmental condition of the Site and the potential existence of oil, petroleum, hazardous substances or materials or hazardous waste releases to soil and/or groundwater as a result of former land uses on-site and from adjacent properties.

The assessment included:

- a visual reconnaissance of the building interiors and outside areas to detect evidence of, and the potential for, surface releases of hazardous materials or oils, and to document former Site operations including hazardous material use, storage, treatment and disposal practices

- documentation of the Site history through interviews with present Site personnel, and inspection of local records, aerial photographs and record mapping

- a review of local, state and federal regulatory agency files to identify reported releases, both on-site or on adjacent properties, which could potentially affect the environmental condition of the Site.

An independent national database service, Environmental Data Resources, was subcontracted to perform a map search for Sanborn Fire Insurance Maps and a government database search in accordance with ASTM Standards for environmental site assessments (E1527-93 and E1528-93). CTDEP files were reviewed by Pirnie. This file search included the following general areas:

- Water Management Bureau
- Waste Management Bureau
- Oil and Chemical Spills
- Department of Natural Resources files and publications.

The Town of Redding files reviewed included the following:

- Assessor's Office
- Building Department
• Zoning Department
• Planning Department
• Conservation Department
• Fire Chief's Office.

2.2 BACKGROUND

The Site was formerly operated as a metal wire manufacturing facility. Active manufacturing operations took place at this facility from the late 1800's through 1989. Carbon steel wire cleaning, extruding, welding, coating and packaging operations were performed, including lead annealing and the application of galvanized zinc finishes to strand wire and wire fabric. The Site is currently the corporate headquarters for the Gilbert & Bennett Manufacturing Company. Manufacturing at this facility ceased in 1989.

The Site is located in the village of Georgetown, Connecticut and straddles the Norwalk River. During its operational history, the property extended south approximately 1.5 miles along the Norwalk River. Route 107 bisects the property formerly owned by Gilbert & Bennett Manufacturing Company, with manufacturing to the north and the facility wastewater treatment clarifier and by-product area to the south. The parcel subject to this assessment extends north from Route 107. The by-product area, south of Route 107, is still owned by the Gilbert & Bennett Manufacturing Company and is the subject of a separate investigation, but will be discussed in subsequent sections.

The size of the Site parcel is approximately 44 acres (including Factory Pond), with 24 buildings. The total acreage of land formerly owned by Gilbert & Bennett Manufacturing Company at this facility was approximately 80 acres, including the property south of the Route 107 overpass.

Previous and current investigations have been conducted at the Site and at the adjoining property (By-Product Management Area, south of Route 107) by Pirnie and other consultants and include:

• 1988 Environmental Overview G&B Property and Surrounding Region, Ferris Architects/Pirnie.
• 1988 King's Mark Environmental Review Team Gilbert & Bennett Renovations, King's Mark Resource Conservation and Development Area, Inc.
• 1988 Status Summary Report, Gilbert & Bennett, Redding, Connecticut, Ferris Architects
• 1988 Hydrogeologic Overview, Pirnie
• 1989 Historical and Environmental Review of G&B Manufacturing Company, Pirnie
• 1992 Container Storage Area (CSA) Closure Plan, Pirnie
• 1992 RCRA Facility Assessment (RFA) Work Plan, Pirnie
• 1993 Container Storage Areas Characterization Findings Report, Pirnie.

Additional studies and investigations to date of the By-Product Storage Area will not be discussed in detail but a general description and summary will be referred to in Section 4.3. As stated previously, this parcel was formerly contiguous with the manufacturing facility prior to the construction of the Route 107 overpass, but is now a separate parcel and is not the subject of this assessment.

The investigations currently being performed that are associated with the Site area include the RFA and CSA reports.

The RFA is currently being performed per Consent Agreement and Final Order entered into by USEPA and effective April 15, 1992. The RFA includes the following:

- Identification and gathering of information (including sampling and analysis) on potential releases of hazardous waste and/or hazardous constituents at the Site.
- Identification of Areas of Concern (ACs), Solid Waste Management Units (SWMUs) and Regulated Units (RUs) from which releases may have occurred.
- Identification and evaluation of releases to any media for all ACs, SWMUs and RUs.
- Determination of the existence of releases of concern and a proposal for interim measures, if necessary, to address the releases of concern.

The CSA Closure Plan has been submitted to USEPA along with Site Characterization Work Plans and a Findings Report for eight (8) CSAs located at the Site. The purposes of these investigations are to:

- Determine if contamination exists from hazardous waste storage in the 8 CSAs.
- Evaluate the results of the Site Characterization activities, establish a final Constituent of Concern (COCs) list, establish the final Media Closure Criteria (MCC) and estimate the volume of contaminated material associated with each CSA (if present).

Based on the results of the Findings Report for the CSAs, a revised Closure Plan for these areas was submitted to the CTDEP in September, 1993. Upon approval of this plan by the CTDEP, the CSAs will be closed in accordance with RCRA requirements.

The following is a list of each CSA and a brief description:

- Rod Storage Shed - A maximum of approximately 80 (55-gallon) drums were stored in this brick building. The shed has not contained hazardous wastes since they were removed in the summer and fall of 1989 and 1990.

- Outside the Rod Storage Shed - Is an area that was used as a temporary drum storage area with a maximum capacity of 64 (55-gallon) drums. The area has not been used for drum storage since they were removed in the summer of 1989 and fall of 1990.

- An area inside of the OMSA Building was used to stage approximately 300 (55-gallon) drums and 200 (1 to 5-gallon) containers prior to their removal and off-site disposal in winter and spring 1990. This area has not been used for hazardous waste storage since that time.

- The Lime Storage Area was used to store approximately 120 (55-gallon) hazardous waste drums, which were removed in 1989-1990. This area has not been used for hazardous waste storage since that time.

- Annealing Building Soap Room was the storage site of 1 (55-gallon) drum and 4-30-gallon drums of hazardous waste, prior to 1990. This area has not been used for hazardous waste storage since removal of the drums in 1989/1990.

- The Long Loom Room was the location of 1 (55-gallon) drum of hazardous waste. This area has not been used for hazardous waste storage since removal of the drums in 1989/1990.

- Within the East Mill, a drum storage area was used with a capacity for 5 (55-gallon) drums. This area has not been used for hazardous waste storage since removal of the drums in 1989/1990.

- The Covered Rod Storage Area had approximately 4 (55-gallon) drums and 1 (30-gallon) drum of hazardous waste. This area has not been used for hazardous waste storage since removal of the drums in 1989/1990.
The results of the CSA Site characterization activities were documented in the CSA Findings Report. The findings indicate that no contamination resulting from the temporary storage of hazardous wastes in the CSAs exists beyond the boundaries of the CSAs or in the soils beneath the CSAs. Residual contamination associated with the CSAs will be remediated in accordance with CTDEP requirements as outlined in the Closure Plan. Some residual contamination above CTDEP closure criteria that is not a result of hazardous waste storage activities was found in the soils beneath the following CSAs:

- Rod Storage Shed
- Outside the Rod Storage Shed
- Lime Storage Room
- Covered Rod Storage Shed
- East Mill.

This residual contamination is likely associated with cinder materials historically used as fill and will be addressed under the RFA.

To the extent that the information is appropriate and relevant to the Phase I Site Assessment, the data collected under the RFA and CSA have been incorporated. These two complementing programs (RFA and CSA) have provided extensive information and exhaustive inquiry into operations and activities that occurred on-site.

The information provided by the RFA and CSA programs, are described in the CSA Findings Report - Pirnie 1993¹. The investigations will provide additional information beyond the scope of a typical Phase I Site Assessment.

¹ A forthcoming RFA Final Report document is estimated to be completed and submitted to USEPA and CTDEP in 1994.
3.0 SITE OVERVIEW

3.1 PHYSICAL SETTING

The Site consists of an approximate 44 acre parcel located at North Main Street in Georgetown, Connecticut (see Figure 2-1), a village in the southwestern corner of the Town of Redding. It is located approximately 12 miles north of Long Island Sound and 4 miles east of the New York State border. Sheet 1 of 3 shows the facility Site Plan and property boundaries. This parcel is bordered north and east of Factory Pond by residential and commercial properties, to the south by the Route 107 overpass and to the west by North Main Street and the Danbury/Norwalk railroad tracks. The land south of the Route 107 overpass is an adjacent parcel known as the By-Product Management Area (see Section 2.2) and the land west of the railroad tracks is largely residential. Institutional properties surrounding the Site include the Georgetown Volunteer Fire Company, Inc., Bethlehem Lutheran Church, Congregational Society of Georgetown and the Gilbert Cemetery. A majority of the Site parcel is occupied by masonry and/or steel framed factory buildings that formerly were used as warehouses, manufacturing areas, raw material storage rooms, boiler rooms, pump stations, maintenance/machine shops, a laboratory, paint shop, carpenters shop, offices, and a cafeteria. The building space totals approximately 1 million square feet or approximately 23 acres. The area outside of the buildings is predominately covered by concrete and asphalt pavement. A 12 acre pond, dam spillway and raceway are located at the northern end of the Site.

The Site and surrounding properties lie along the north-south trending Norwalk River Valley flood plain. The site topography is relatively flat at approximately 320 feet above mean sea level (msl), except along the banks of the Norwalk River where it drops off steeply to an elevation of approximately 305 feet above msl. Generally the Site is bounded by steep sloped uplands to the east and west and short steep slopes to the Norwalk River which bisects the facility. Below the dam spillway water from the river and raceway flow below facility buildings for approximately 500 feet, before reappearing within the mill yard area on the southern portion of the Site. It then flows east before elbowing south toward Route 107.
The Norwalk River Valley is part of the Southwest Connecticut Coast drainage basin and ultimately drains into Long Island Sound. According to the Town of Redding Planning Department's Wetlands Map, wetlands are located to the northeast and southeast of the facility. Figure 3-1 shows a schematic drawing of the approximate wetland areas relative to the Site. The town wetland maps were generated from aerial photographs and topographic maps.

Aerial stereo pair photographs from 1935, 1949, 1959, 1965, 1969, 1970, 1975, 1985 and 1990 were reviewed. Based on the aerial photographs, the following historical Site information was obtained:

- **1935 - Photographs**
 The large scale and poor resolution on these photographs make it difficult to define actual building configurations. Factory Pond is distinguishable as is the Norwalk River, Route 7 and the majority of the Weaving Building. The area immediately surrounding the facility appears developed.

- **1949 - Photographs**
 The following factory buildings are visible: office, Weaving Building, Strand Galvanizing, Rod Storage Shed, East Mill, Fabric Galvanizing, Warehouse and Maintenance. The Main Parking Area and By-Product Management Area are contiguous (prior to construction of Route 107). Factory Pond is visible, as is the Norwalk River meandering through the facility.

- **1959 - Photographs**
 The large scale on these photographs make it difficult to distinguish actual buildings. However, the newly constructed Route 107 is visible and bisects the Main Parking Area and the By-Product Management Area. The OMSA Building is visible and its location along the east bank of Factory Pond has changed the configuration of the pond. The Norwalk River is not clearly distinguishable.

- **1965 - Photographs**
 New buildings/additions that are visible on these photographs include the Welding Building, East Mill additions and office additions. Factory Pond shows as a light colored reflection and the Norwalk River is visible except where it flows under the Welding Building.
1969 - Photographs These photographs are at a slightly larger scale than the 1965 photographs but appear to show the same features.

1970 - Photographs The Site appears relatively unchanged compared with the 1965 and 1969 photographs.

1975 - Photographs These photographs show the New Warehouse on the west bank of Factory Pond, otherwise, the Site is unchanged from the previous photographs.

1985 - Photographs The Site appears relatively unchanged from previous photographs except the Covered Rod Storage Shed is visible and the Warehouse that was centrally located in the facility along the Norwalk River is gone. Light-colored propane tanks are visible northwest of the New Warehouse.

1990 - Photographs The buildings in these photographs are essentially the same as in the previous photographs. The propane tanks northwest of the New Warehouse are gone but dark-colored tanks are visible to the west of the New Warehouse.

The Site is served by both public and private utilities. Electricity is provided by the Connecticut Light and Power Company. The Gilbert & Bennett Manufacturing Company historically supplied their own propane gas with tanks formerly stored by the New Warehouse; these have since been removed.

Water is currently supplied by a bedrock well located behind the main office building. Since cessation of manufacturing in 1989 at the Site, the well now provides water for approximately 20 employees working in the corporate headquarters of the office. Four (4) other bedrock wells were formerly utilized during active manufacturing prior to 1989. All five wells are located on Sheet 1 of 3. River water was used on-site for production and a surface water dechlorination system had been used to treat the river water.

While still active, the Gilbert & Bennett Manufacturing Company discharged non-contact cooling water, cooling water and treated process water to the river. These discharges were regulated by CTDEP under Gilbert & Bennett Manufacturing Company's NPDES permit. Section 4.0 discusses these discharges and describes the wastewater treatment system in detail. A copy of the most recent NPDES permit is included in Appendix A. Since the manufacturing activities have ceased on the Site, no production
related discharges are released to the Norwalk River. Sanitary wastes were formerly and are currently discharged through on-site septic systems. Septic tanks and leaching fields have been used for sanitary wastewater; there are no known connections of process wastewaters to these systems. Stormwater runoff is collected by catch basins and is routed to the Norwalk River.

A total of 15 underground storage tanks (UST) located on-site have either been filled and abandoned or removed. The status of each tank and a summary of information from the UST removals is presented in Section 4.4. The current status of the areas surrounding the former UST (i.e., excavation pits or cemented in fill-pipes) are discussed in Section 5.0.

3.2 GEOLOGIC SETTING

3.2.1 Bedrock Geology

The regional bedrock is part of the structurally complex Western Uplands Physiographic Province in Connecticut. Bedrock formations in the Site area have been mapped as Harrison Gneiss and Ratlum Mountain Schist. Bedrock is exposed in the upland areas just east and west of the Site and to the south of the Route 107 embankment. The bedrock formations consist primarily of a foliated (layered) biotite, quartz, andesine gneiss and a biotite, quartzite schist.

3.2.2 Surficial Geology

The surficial geology surrounding the Site consists of grey, brown fine to coarse sand ranging from 0 to 70 feet in thickness. The sand unit is underlain by glacial till consisting of compact, poorly sorted clay, silt, sand and some gravel and ranges in thickness from approximately 0 to 8 feet. The sand and till units directly overlie bedrock. The surficial material directly below the Site is reported to consist of artificial fill. A bedrock groundwater well provides water for the G&B corporate headquarters. Area businesses and residences are also serviced by bedrock wells. Five bedrock wells are located at the Site but no information was available regarding the overburden aquifer on-site. South of the Route 107 overpass, in the By-Product Management Areas, a total of 17 monitoring wells are in
place. These groundwater monitoring wells include shallow and intermediate overburden wells and shallow bedrock wells.

Shallow groundwater in the By-Product Management Area is present at depths ranging from approximately 5 to 15 feet below grade. Shallow overburden groundwater flow is generally towards the Norwalk River in this area and presumably similar flow regimes exist for the Site area. It is believed that the groundwater beneath the Site ultimately discharges to the Norwalk River.

3.3 ENVIRONMENTAL CLASSIFICATIONS

As shown in Figure 3-2, the groundwater beneath the Site and surrounding area has been classified by the CTDEP as GAA, GA and just south of the Site in the By-Product Management Area it is GB. The GAA and GA classification indicates that the groundwater quality is presumed suitable for direct human consumption without need for treatment and the groundwater recharges public supply wells (see Figure 3-2). The groundwater is designated for use as an existing or potential public drinking water supply.

The Norwalk River, which bisects the Site, has been classified by CTDEP as a "B" stream. This classification allows for permitted discharges including cooling water discharges, discharges from municipal and industrial wastewater treatment systems. Designated uses for a Class B stream include "recreational use; fish and wildlife habitat; agricultural and industrial supply and other legitimate uses including navigation".

3.4 SITE HISTORY

In 1818, Benjamin Gilbert began a cottage industry in his Georgetown home, with the production of horsehair sieves for sifting meal and flour. The business grew to include the twisting of horsehair to be used for stuffing mattresses and cushions. In 1834, wire was substituted for horsehair to improve the durability of the sieves. In 1848, the company purchased a sawmill along the Norwalk River (south of the Site) to accommodate increased business and the need for power generation. In 1850, the company began to manufacture glue from animal hides, continuing that operation until 1877. During the 1860's, new products were introduced such as wire screening for windows and a new wire mill was built containing facilities for drawing iron wire and hot dip galvanizing the wire using zinc. The
zinc protected the wire from corrosion. Around 1869, the company moved to the current Site. Steel replaced iron in most of the company's products in 1874. That same year a fire destroyed many of the buildings at the Site, which were rebuilt that year.

A portion of one of the original buildings from 1874 is still standing, and more recently, housed part of the Strand Galvanizing Area (6C) and Welding Areas. Based on historic mapping from the turn of the century, the baking, cleaning, drawing, annealing and galvanizing rooms were located in the same areas as they were at the time of shut-down in 1989. This was also true for the office, blacksmith shop and paint shop. The building originally constructed as a weaving building, (based on mapping from 1909 and 1935) was later used as a Maintenance Shop until the facility was shut down.

By 1909, coal fired annealers were used to make the wire more malleable. The present Weaving Building was constructed in 1919. Improvements to the operations continued and by 1948 the Strand Galvanizing and Fabric Galvanizing systems were installed. This allowed for continuous automated operations at each location. Also, by 1948 lead annealing replaced coal-fired annealers.

A major flooding of the Norwalk River on October 15, 1955, covered the Georgetown facility with 9 to 10 feet of water. Several dams north of the Site were breached and although the dam at the Site held, the hillside along the west side of the dam reportedly collapsed. Several buildings sustained significant damage from the flood. Following the flood, an additional process and warehouse building was constructed (East Mill/OMSA Building). In 1973 the West Warehouse was built. The Gilbert & Bennett Manufacturing Company continued to operate a metal wire manufacturing facility at the Site until 1989.
4.0 REGULATORY COMPLIANCE HISTORY

Under the current CSA and RFA programs, all potential ACs, SWMUs and RUs, as defined in the Consent Agreement, are to be included in the on-going investigations. The ultimate status of any of these areas including former NPDES permitted discharges, reported releases, spills or leaks and USTs are being addressed as part of the CSAs or RFA investigations.

4.1 REGULATORY IDENTIFICATION

Prior to the cessation of manufacturing activities in 1989, the Gilbert & Bennett Manufacturing Company facility USEPA Identification Number was CTD001162775. Currently, the By-Product Management Area south of the Route 107 overpass, is subject to RCRA Closure and Post-Closure in accordance with 40 CFR 265 and Connecticut Hazardous Waste Management Regulations presented in Section 22a-449(c)-105. A revised Closure and Post-Closure Plan for the area is currently under review by the CTDEP. As stated in Section 2.2, a CSA Closure Plan and an RFA Work Plan are also currently being performed at the Site.

The following subsections describe these on-going regulated activities in greater detail and discuss additional regulatory agency information pertaining to the Site.

4.2 PERMITS

The Gilbert & Bennett Manufacturing Company was issued an NPDES permit (CT0002917) effective April 24, 1989 through April 24, 1994 (Appendix A). Since shutting down manufacturing operations in July 1989, all NPDES discharges have ceased. The former permit allowed for nineteen (19) active discharges including non-contact cooling water, contact cooling water, and treated process wastewater from the facility’s wastewater clarifier. Process wastewaters, primarily wash water and rinse water, were collected from several manufacturing operations. Acids used in the manufacturing process (sulfuric and hydrochloric) were combined with wastewaters and neutralized in a tank located in the manufacturing process area outside the Lime Room. The neutralized wastewater was then
pumped to concrete clarifier tanks located to the south of the facility at the By-Product Management Area (off-site), where precipitated solids were allowed to settle out. Settled solids (by-product) were pumped from the clarifier to one of two holding areas until mid-1987. These areas were described in the facility's Part A Interim Status Permit. After mid-1987, by-product solids were pumped from the clarifier tanks to tank trucks for off-site treatment and disposal until the facility shut down in 1989.

4.3 DOCUMENTED RELEASES AND ENFORCEMENT HISTORY

In 1990, Gilbert & Bennett Manufacturing Company submitted information to USEPA regarding documented releases known to have occurred at the Site in response to an inquiry by USEPA. The following releases and associated regulatory enforcement information were included in the 1990 submittal:

Waste Oil Storage Area

In 1988 a spill of water soluble oil occurred at the oil storage container area outside the Fabric Galvanizing Area (Pans 1 & 2). The amount of the spill was reported to be 30-50 gallons, which was remediated according to G&B records. No additional information was available.

PCB Transformers

The Gilbert & Bennett Manufacturing Company received a Notice of Non-Compliance pursuant to the Toxic Substances Control Act (TSCA) 15 USC 2605 by USEPA on June 23, 1986 regarding PCB violations reported on-site. The USEPA notice was issued based on a TSCA inspection in 1986. USEPA determined that Gilbert & Bennett Manufacturing Company owned and operated PCB transformers and capacitors but had not properly labelled, registered or reported their use in accordance with 40 CFR 761. USEPA also reported that oil stained soils were found to contain 380 parts per million of PCBs. Gilbert & Bennett Manufacturing Company reported that approximately 1.5 gallons of "pyranol" had leaked out of the main transformer at the substation located north of the maintenance building. The material was cleaned up and three-55 gallon drums of soil were removed from the
spill area and manifested by Three C Electrical Testing Co., Ashland, Massachusetts. Appendix B includes the CTDEP manifest for this disposal. Further, the required labeling, marking and reporting documents were procured by Gilbert & Bennett Manufacturing Company regarding their PCB equipment. Also in 1986, six transformers were chemically dechlorinated. A subsequent Consent Agreement (Appendix B) was administered by USEPA on January 21, 1987. The Consent Agreement resolved the issues arising from the initial inspection and subsequent Notice of Non-Compliance and stated that the Gilbert & Bennett Manufacturing Company facility was in compliance with all applicable requirements of 40 CFR 761. CTDEP received a complaint, filed February 2, 1990 regarding PCB documentation from the 1986 spill and subsequent clean-up. As a follow-up, USEPA requested a TSCA inspection, which was performed by CTDEP personnel February 20, 1990. According to CTDEP PCB Section files, the only potential violation based on that TSCA inspection was the absence of one Annual PCB Report for 1988 on the Site. This document was subsequently submitted to CTDEP by Gilbert & Bennett Manufacturing Company on December 26, 1990. No further actions by CTDEP were documented. In November of 1990 the six PCB transformers were manifested and disposed of (incinerated and landfilled) off-site by ENSCO in Eldorado, Arizona.

Spills/Leaks

The following spills/leaks were reported by Gilbert & Bennett Manufacturing Company in the 1990 submittal to USEPA:

- **Prior to 1980** - Two spills of #2 fuel oil were reported near the annealing building. The amounts are not known. It is believed that remediation was done by absorbent materials, however, no confirmatory documentation was found.

- **1983** - Three reported spills occurred in 1983, two of #2 fuel oil and one of paint thinner. The first #2 fuel oil spill was reportedly on March 31, 1983 when #2 fuel oil "seepage" to the ground and Norwalk River occurred near the
Annealing Building. It is believed that absorbent materials were used to attempt clean-up in the river. CTDEP was notified and required remediation was discussed. No volume of #2 fuel oil spilled was reported. On May 2, 1983, a release of a "slight quantity" of #2 fuel oil was reported to the ground/Norwalk River and absorbent material was believed to have been used to attempt clean-up. The CTDEP Oil and Chemical Spills Section was contacted and a report was filed on May 2, 1983. On August 12, 1983, 2 to 3 gallons of paint thinner were reportedly released onto the ground and river near the trash compactor. The CTDEP Oil and Chemical Spills Section was notified and a report was filed.

-1985- On March 11, 1985 a "small amount" of #2 fuel oil was reportedly released to the ground and Norwalk River near the Annealing Building. Absorbent material is believed to have been used to attempt clean-up and the State Police Headquarters in Hartford was notified. A report was filed on March 14, 1985 and an EPA representative subsequently inspected the area.

-1988- On February 1, 1988 an estimated release of 20 gallons of water soluble oil was reported outside the Fabric Galvanizing Building Pan #1. The oil was contained and absorbed in accordance with Gilbert & Bennett Manufacturing Company's spill control measure procedure and the CTDEP Oil and Chemical Spill Section was notified. A report was filed on February 2, 1988. Also in 1988 a release of a "small amount" of #2 fuel oil to the Norwalk River near North Bridge was reported on September 29, 1988. Oil washed into storm drains during a rain storm. Absorbent material was used to attempt to clean-up the spill in the river. Remediation activities were observed by CTDEP personnel.

4.4 UNDERGROUND STORAGE TANKS (USTs)

USTs currently or historically located on-site have been summarized in Table 4.1. DJP Associates, Cheshire, Connecticut collected post-exavation soil samples from the
TABLE 4-1

GILBERT & BENNETT

Underground Storage Tank (UST) Status

<table>
<thead>
<tr>
<th>TANK I.D.</th>
<th>SIZE (gallons)</th>
<th>LOCATION</th>
<th>DATE REMOVED (R) OR ABANDONED (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UST-1</td>
<td>NA</td>
<td>Outside the Gate House</td>
<td>1965 (A); 1990 (R)</td>
</tr>
<tr>
<td>UST-2</td>
<td>NA</td>
<td>Under HICF Area outside Welding Office</td>
<td>1957 (A); 1990 (R)</td>
</tr>
<tr>
<td>UST-3</td>
<td>2,147</td>
<td>Under Pump Room</td>
<td>pre-1964 (A)</td>
</tr>
<tr>
<td>UST-4</td>
<td>1,626</td>
<td>Under Pump Room</td>
<td>pre-1964 (A)</td>
</tr>
<tr>
<td>UST-5</td>
<td>1,579</td>
<td>Weave Building yard</td>
<td>1969 (A); 1991 (R)</td>
</tr>
<tr>
<td>UST-6</td>
<td>5,000</td>
<td>Area 6F, Strand Galvanizing</td>
<td>1972 (A); 1990 (R)</td>
</tr>
<tr>
<td>UST-7</td>
<td>5,000</td>
<td>Near Pan #1, Fabric Galvanizing</td>
<td>1986 (R)</td>
</tr>
<tr>
<td>UST-8</td>
<td>20,000</td>
<td>North of Paint Shop</td>
<td>1986 (R)</td>
</tr>
<tr>
<td>UST-9</td>
<td>10,000</td>
<td>South of New Warehouse</td>
<td>1986 (R)</td>
</tr>
<tr>
<td>UST-10</td>
<td>20,519</td>
<td>East of Rod Cleaning House</td>
<td>1986 (R) Formerly stored #6 fuel oil in pre-1973</td>
</tr>
<tr>
<td>UST-11</td>
<td>20,000</td>
<td>East of Rod Cleaning House</td>
<td>1986 (R) Formerly old kerosene tank</td>
</tr>
<tr>
<td>UST-12</td>
<td>25,000</td>
<td>Across river from Boiler House</td>
<td>1986 (R)</td>
</tr>
<tr>
<td>UST-13</td>
<td>25,000</td>
<td>Across river from Boiler House</td>
<td>1986 (R)</td>
</tr>
<tr>
<td>UST-14</td>
<td>NA</td>
<td>Outside Welding Office (just south of UST-2)</td>
<td>1991 (R)</td>
</tr>
<tr>
<td>UST-15</td>
<td>NA</td>
<td>Lift Truck Room</td>
<td>1989-90 (R)</td>
</tr>
</tbody>
</table>

NA, Not Available
removed UST pits or from soils below the areas where UST-8, UST-9, UST-11, UST-12 and UST-13 were temporarily stored (by the New Warehouse). Matrix, Analytical, Inc./Water Resources Laboratory, Hopkinton, Massachusetts, performed the analyses on soil samples, which generally consisted of USEPA method 8240 volatile organic compounds (VOCs) and USEPA method 418.1 total petroleum hydrocarbons (TPH). In addition, selected samples were analyzed for Extraction Procedure (E.P.) toxicity for the eight RCRA metals and PCBs. The analytical results are presented in their entirety in Appendix C.

Available analytical results for soils were compared to the following CTDEP remedial criteria employed for GA groundwater classification area:

- **VOCs** - Health risk-based criteria for direct ingestion of soils
- **TPH** - 100 mg/kg
- **Metals (EP Toxicity)** - USEPA Maximum Contaminant Levels (MCLs) or Connecticut Department of Health Services drinking water standards (DWS).

A comparison of analytical results of soils from each UST location to the typical CTDEP remedial criteria is presented below:

UST-1 - Three VOCs were detected in soil samples from this area, all of which were below the risk-based standards. TPH was detected in one sample, but was below the CTDEP criteria.

UST-2 - No VOCs were reported above the detection limits. The TPH concentrations were above the CTDEP criteria. EP Toxicity procedure concentrations of barium, chromium and lead were below the DWS.

UST-3 - An excavation in the reported location of this UST was performed, but no UST was found or removed. No soil samples were obtained in this area.

UST-4 - An excavation in the reported location of this UST was performed, but no UST was found or removed. No soil samples were obtained from this area.

UST-5 - Results of the post-excavation soil samples reported benzene, toluene and xylene below the risk-based standards. TPH concentrations were above the CTDEP criteria.

UST-6 - No VOCs were reported in post-excavation soil samples. TPH concentrations were above the CTDEP criteria. Barium was the only EP toxicity metal reported above detection limits, but was below the DWS. A second post-excavation soil sample show no VOCs above detection limits, TPH concentrations below the CTDEP criteria and EP toxicity concentrations of barium and lead below the DWS. Cadmium was detected above
the DWS. Also soil and concrete from under UST-6 were analyzed. No VOCs were reported for this sample, but the TPH concentration was above the CTDEP criteria. EP toxicity results showed barium, chromium and lead concentrations below the DWS.

UST-7 - No VOCs were reported from post-exavation samples. TPH concentrations were above the CTDEP criteria, however in a confirmatory round, TPH was reported below the CTDEP criteria in two samples.

UST-8 - A soil sample was obtained from the area below UST-8 and UST-10. The TPH concentration for this sample was above the CTDEP criteria.

UST-9 - A soil sample from the area below UST-9 and UST-13, had a TPH concentration below the CTDEP criteria.

UST-10 - See UST-8 above. A soil sample from the test pit presumed to correlate with the location of UST-10 and UST-11, reported no VOCs above detection limits. TPH was reported above the CTDEP criteria.

UST-11 - See UST-10 above. A soil sample from the area below UST-11, had a TPH concentration above the CTDEP criteria.

UST-12 - A soil sample from a test pit presumed to correlate with the former location of UST-12 and UST-13, reported no VOCs above detection limits, but had a TPH concentration above the CTDEP criteria. A soil sample from the area below UST-12, had a TPH concentration above the CTDEP criteria.

UST-13 See UST-9 and UST-12 above.

UST-14 - No data was available. This tank was reportedly a waste oil storage tank and was enclosed in a vault. Section 5.0 discusses the current status of this UST.

UST-15 - No data was available. This tank was a waste oil tank that was reported to have been cleaned and filled with cement in 1989-90.

4.5 INSPECTION FILES

4.5.1 State Records

The State file search was conducted during a CTDEP office relocation consequently files from the Air Permit Unit and Solid Waste Unit were not able to be reviewed.

The CTDEP PCB and UST files are discussed in Sections 4.3 and 4.4. Additional CTDEP file searches are discussed below.
Water Management Bureau Files

The files from this department included the NPDES permit (Section 4.1) and several correspondences regarding the discharge toxicity evaluations (DTEs) and daily monitoring reports (DMRs) performed in association with the NPDES permit. Miscellaneous documents included:

- Wastewater analytical results (1974 - 1980).
- A report on water quality standards for lead and zinc, performed in 1982 by USEPA and CTDEP in the Norwalk River at the Site.
- Newspaper article on a Cease and Desist Order for plastic coating odors (1986).
- Miscellaneous correspondence between CTDEP and Gilbert & Bennett Manufacturing Company regarding the NPDES permit (various dates).
- Anonymous letter from a person claiming to be a former employee regarding alleged spills and disposal practices (1989).

Hazardous Waste/Oil and Chemical Spills Files

A number of documents were included in this file regarding the by-Product Management Area Closure. Most of these documents are listed in Section 2.2 and are referred to elsewhere in this report. The file also contained miscellaneous correspondences, Notices of Deficiency, Public Notices, and associated regulatory agency documents regarding the By-Product Management Area. Also in this file was a RCRA Hazardous Waste Inspection Report from November 22, 1991, and several correspondences regarding the CSA Closure.

4.5.2 Town Records

Building Department

The Town of Redding Building Department records included:

- Well specification/completion logs for 3 bedrock wells located on-site and directly across the street at the Old Post Office.
A building permit (1964) to repair a septic system and replace a tank with a new tank near the East Mill, abutting Portland Avenue.

A building permit (1966) to replace a dry well (leading from cafeteria grease traps to a 750-gallon dry well).

Tank installation inspections from 1974 for propane tanks at the Old Post Office, Acid Storage Tank (HCL) outside of the Cleaning House and propane tanks at the New Warehouse.

A building permit (1977) for propane gas storage tanks by the New Warehouse.

A building permit (1986) for an industrial incinerator exhaust.

A building permit (1987) to construct a new septic system for the office.

Zoning Department

A zoning permit (1977) for partial demolition (area not specified).

A zoning permit (1979) for storage addition (area not specified).

A zoning permit (1979) for office space in the basement of the office building.

Planning and Conservation Departments

A bedrock fracture map and wetlands map were reviewed in these departments.

Fire Marshall’s Office

According to Jack Hawkins, Fire Marshall, there are no records of any chemical fires or spills documented by his department. The Fire Marshall was present on-site during the conduct of UST removals in 1991, but said his office does not have records of any previous tank removals. The Fire Marshall’s office does not require the registration of PCB transformers.

4.6 INDEPENDENT DATABASE SEARCH

Environmental Data Resources, Inc. (EDR) performed a national database file search for the Site. The EDR report is attached in its entirety in Appendix D. The federal
database search included a search for historic Sanborn Fire Insurance maps of the area and the following databases:

- Comprehensive Environmental Response, Compensation and Liability Information Systems (CERCLIS): a list of over 34,000 Sites USEPA has identified as hazardous waste sites that may require clean-up.
- National Priorities List (NPL) Superfund Sites: a subset of CERCLIS with over 1,200 sites identified for priority clean-up.
- Emergency Response Notification System (ERNS) a list of over 25,000 spill records and reported releases.

The State database search performed by EDR included State hazardous waste sites, solid waste facility, landfill sites, leaking underground storage tanks (LUST) incident reports and registered USTs.

The Sanborn Fire Insurance Map search did not produce any historic Sanborn maps for this area. The site was identified on the following federal files included in the above referenced databases:

- RCRIS - Temporary, Storage, Disposal Facility (TSDF)
- Facility Index System (FINDS)
- Toxic Release Inventory System (TRIS)

The EDR database file search was generally consistent with previously discussed CTDEP file search records (Section 4.5.1).
5.0 SITE WALK-OVER

5.1 INTRODUCTION

The site was inspected on August 10, 11 and 12, 1993 by Evelyn Gallagher, Brian McCarthy, Guy Dalton and David Potts of Malcolm Pirnie, Inc. They were accompanied by Brian Redmond of The Gilbert & Bennett Manufacturing Company. The RFA Visual Site Inspection (VSI) was conducted concurrently. There were no limiting Site conditions or accessibility problems encountered during the inspection. Representative Site photographs that were taken at the time of the Site visit are included in Appendix E. The features described below are shown on Sheet 1 of 3 and 2 of 3.

5.2 GENERAL ISSUES

As stated throughout this report, the facility ceased manufacturing operations in 1989. Since that time, the facility has undergone substantial decommissioning. Most of the equipment has been removed and no production related activities can be observed. Consequently, the potential presence or absence of releases associated with specific production activities and procedures may not be visible at this time. In addition, because of the duration of historic manufacturing operations many of the areas have changed physically with time.

Many of the buildings have deteriorated since 1989. Building floors in some of the older production areas throughout the Site were cracked, corroded, scraped, stained and generally had poor integrity. Dirt and potentially process related dust (particulates) were noted in many of the process area building floors. These buildings have not been heated since 1989 and consequently, some of the ceilings, roofs and walls have deteriorated and evidence of rainwater leakage is apparent.

A number of facility processes used a variety of metallic baths (lead and zinc), acids (sulfuric and hydrochloric), lubricating and hydraulic oils and miscellaneous raw materials. Based on the nature of historic production activities at the facility, the areas where the actual manufacturing or associated activities (like welding, maintenance, repairs, painting and carpentry) took place may be potential sites of releases. For this reason, each process
on-site and/or individual buildings that housed each activity were addressed as one contiguous area with all potential pathways for migration of a release investigated.

The Norwalk River was the outfall for all NPDES permitted discharges and is the principal surface watercourse draining the watershed, which includes the Site. It is the presumed discharge point for potential releases that may have occurred through floor drains, trenches, sumps, septic systems, storm sewers or other pathways. Based on anticipated groundwater flow regimes in the shallow overburden (Section 3.3.2), the groundwater also discharges to the Norwalk River.

As part of the on-going RFA program, the presence of indicator constituents in surface water and sediments in the Norwalk River and on-site groundwater quality are being investigated.

5.3 USTs

The former locations of all USTs reported in Section 3.1 and 4.4 were inspected. The following section summarizes observations made at each location. Appendix E presents photographs of each area and Sheet 4 of 4 shows the UST locations.

UST-1

UST-1 was a gasoline storage tank located outside of the former Gate House. The area is covered with sand and gravel and is overgrown with weeds. No evidence of a release was noted.

UST-2

This former UST was located within the wire mill, outside of the former Welding Office. The dimensions of the pit excavated to remove the tank were approximately 22 feet by 5 feet and 3 feet deep. A concrete saddle that was the foundation for the tank is still present in the northeast corner of the excavation. The building floor was in fair to good condition. No evidence of a release was noted.
UST-3 and UST-4

These two tanks were reportedly located at the northern end of the Pump Room, according to facility mapping. However, excavation attempts to locate these tanks were unsuccessful. A filled depressed area approximately 3 feet by 10 feet and 6 to 12 inches deep, was noted in this area of the Pump Room. However, there is no documentation regarding tank removal or abandonment of the tanks. According to DJP Associates, UST-4 was not found (see Section 4.4). The pit was partially filled in with sand, gravel, and debris from the Pump Room. No evidence of a release was noted.

UST-5

The former location of this UST (in the Weaving Building Courtyard), consists of a large diameter excavation pit (approximately 40 feet in diameter). The excavation is approximately 4 feet deep and is overgrown with weeds. The side walls of the excavation appear to consist of slag, coal, wood chips, iron-stained nodules and glass shards. The paved area surrounding the excavation shows construction seams and patched areas within the concrete lot. No evidence of a release was noted.

UST-6

This UST was located within the Strand Galvanizing Area (6F). A filled excavation was observed that was approximately 30 feet by 20 feet and 6 inches below the finished floor. The excavation was covered with plastic. No evidence of a release was noted.

UST-7

This UST was located within the Fabric Galvanizing Area (Pan 1 and 2). A filled excavation was observed approximately 25 feet by 10 feet in area. The excavation was filled with sand, gravel and brick. No evidence of a release was noted.

UST-8

UST-8 was located outside of the Strand Galvanizing Area (6CE) and north of the Paint Shop. The area is overgrown with weeds. A small soil pile was noted next to an apparent excavation pit, presumably the location of the former UST. The pit was approximately 5 feet in diameter. No evidence of a release was noted.
UST-9

The former location of UST-9 (outside of the New Warehouse), is completely filled in and overgrown with weeds. No apparent signs of the UST or excavation were visible. An above ground tank was observed enclosed within a containment berm northwest of the former UST location. Standing water was noted within the containment berm at a depth of approximately 1 foot. No evidence of a release was noted.

UST-10 and UST-11

A large excavated area was observed where UST-10 and UST-11 formerly were outside of the Cleaning House. The irregular shaped excavation was approximately 42 feet in width with 3 separate "prongs" approximately 5 feet, 5 feet, and 10 feet long. The excavation was approximately 4 feet deep. The entire excavation was overgrown with weeds. A covered corrugated metal pipe approximately 18 inches in diameter due west of the USTs was noted and water was observed at approximately 8 feet below grade. Brian Redmond of Gilbert & Bennett Manufacturing Company reported that this was used as an oil recovery well during the UST removal project.

UST-12 and UST-13

Three large excavations and a soil pile were observed in the former area of UST-12 and UST-13 just north of the Weaving Building. The excavation dimensions were approximately 30 feet x 20 feet x 6 feet deep, 18 feet x 20 feet by 4.5 feet deep and 15 feet x 10 feet x 3 feet deep. The uncovered soil pile was approximately 6 feet high and 15 feet in diameter. The paved area surrounding the excavations is partially re-paved but in many areas the asphalt and concrete pavement was broken up, scraped and cracked. No visual staining was observed. Along the west bank of the Norwalk River, inside of the stone/cement retaining wall, was a berm that had been constructed to prevent oil seepage emanating from UST-12 and UST-13 from entering the river. Oily sediments were observed within the bermed wall. An oil recovery well was also noted adjacent to the western most excavation pit in this area. This well was constructed similarly to the oil recovery well installed near UST-10 and UST-11 excavations, and used during the removal of UST-12 and UST-13, according to Brian Redmond.
UST-14

This former UST was located in a concrete vault within the Wire Mill near the former Welding Office. It was approximately 40 feet south of UST-2. The vault is below steel plates located in the floor. Upon removing the steel plates, standing water with an oil sheen was observed in the vault. This UST was reportedly used as a waste oil tank. The size of the vault was approximately 12 feet by 3 feet by 3 feet deep.

UST-15

The southeast corner of the Lift Truck Repair Room is the location of a former waste oil UST. The area between two apparent floor lifts is concreted over. In addition, a floor drain located in the center of the room was plugged with concrete.

5.4 STRAND GALVANIZING AREAS

Three Strand Galvanizing Areas were formally operated on-site; 6F (southwest corner), 6C (north of 6F) and 6CE (in the East Mill). All three areas used the same galvanizing process. First, the wire was pulled or drawn through a molten lead annealing bath to soften it. Dilute hydrochloric acid was then used to clean or pickle the wire, followed by a flux bath to enhance zinc application. A molten zinc bath followed by a water quench and an oil bath concluded strand galvanizing. The lead baths used a layer of charcoal on the surface of the molten lead to provide insulation. Once removed, the charcoal was referred to as "skimmings". Similarly, in the zinc baths a layer of vermiculite (skimmings) were used. Impurities in the zinc bath that settled to the bottom were removed periodically and were referred to as zinc dross.

Throughout the inspection of all three areas the following were noted:

- Plugged piping, open-ended piping
- Trenches and pits
- Oil and water stained floors
- Etched and broken brick foundations
- Cracked, corroded and dusty floors
- Asbestos covered pipes
- Holes in the ceiling/roof from former vent pipes
- Paint peeling.
An approximately 275 gallon mobile oil-tank (apparently empty) used for maintenance activities was observed in Area 6CE. Adjacent to Area 6F was a small room that had oil stains on the floor and on the walls.

5.5 FABRIC GALVANIZING AREAS

Two Fabric Galvanizing Areas were formally operated; Pans 1 & 2 (in the center of the production areas) and Pan 3 (just west of Pans 1 and 2). The Fabric Galvanizing process was similar to the Strand Galvanizing operation except that lead annealing was not used as part of the process.

The following were noted in both Fabric Galvanizing Areas:

- Trenches and pits
- Cracked, corroded and heavily stained floors
- Asbestos covered pipes (overhead)
- Paint peeling.

A "straight and cut" room was noted off of Fabric Galvanizing Area Pan 1 & 2. Walls and floors of this room were heavily stained and the floor was broken up.

5.6 REVERSE TWIST BUILDING

This area was where galvanized wire was twisted into the wire netting product line. The machines have been removed from in the Reverse Twist Building and no evidence of a release was noted. Outside of the building along the west side is a stone trench that was reported to have received compressor blow down discharges and was partially excavated. Contaminated soils were reported to have been removed from this trench in 1989-90. This trench was overgrown with weeds and vegetation. No evidence of a release was visible.

5.7 WELDING AREA

This area was where the wire was welded to form fence material. The eastern portion of this area, formerly used as part of the Welding Area, was one of the originally constructed manufacturing buildings and dates back to approximately 1874. The Norwalk
River Channel and a raceway flows under this portion of the facility adjacent to an old turbine area. The following were noted in the Welding Area:

- Trenches and pits
- Oil stains
- Water from the Mill Pond was leaking into the old turbine room from a broken pipe.

The eastern portion of the Welding Area is reported to be where coal had been stockpiled, based on earlier mapping (circa 1909). Pressurized chlorine gas cylinders were also reported to have been stored near the turbine room.

5.8 WEAVING BUILDING

The Weaving Building is a four story high structure located on the southern end of the production areas, adjacent to the Main Parking Area. This building was used to weave the wire into fabric. A paint drying tower was located in this building and a small drum storage shed for mixing paints and lacquers was located in the courtyard of the Weaving Building. This area of the courtyard has been excavated as part of the removal of UST-5 (see Table 3-1 and Section 4.4) A trench was noted outside of the basement ramp. Except for the basement, the floors were either empty and locked or were being used for storage of files and miscellaneous equipment. No evidence of a release was noted on the upper floors. Weaving machines were still in place in the basement. The following were noted in the basement during the inspection.

- Oiled stained and caked floors
- Floor drains
- Some slight staining at the base of the drying tower.

5.9 MAINTENANCE BUILDING

This building is located on the eastern side of the production areas. Based on historical mapping, pre-1935, this building housed a "Fitchberg Engine" and was also used as a weaving building and substation. Approximately one half of the basement of the Maintenance Building has a concrete floor in good condition and is currently being used as an electrician's shop, carpenter's shop and maintenance shop. Tools, equipment, boiler, and empty drums were observed in this portion of the basement. Some incidental stains were noted on the floor. The other half of the basement is not finished and has an earthen floor.
The soil in this portion of the basement was stained. The first and second floors of this building are being used for storage of company files, maps and miscellaneous equipment. A former solvent wash station was located on the first floor in the old machine shop. Based on a site inventory of the facility in 1990, an above ground kerosene tank was formerly located outside at the north end of the Maintenance Building. The exterior walls and paved ground are stained in this area.

5.10 OMSA BUILDING

The OMSA Building is located on the far northeast portion of the production areas. The OMSA Building was the location of the coating line for the fabricated fence and was also used for storage. The coating process consisted of a caustic soda bath, water-based primer and powdered vinyl coating. A large portion of the OMSA Building is currently being addressed under the CSA closure.

In general, the condition of this building was good. The floors were intact, except for some construction seams and a few stains, particularly surrounding a former fuel oil pump station. The insulation on the walls was peeling in some areas and there were holes in the ceiling where vent fans had presumably been removed. An above ground tank was observed outside of this building in the northeast corner. It has been reported that a diesel tank had also been stored on the north side of the building. No evidence of a release was noted in the vicinity of either above ground tank.

5.11 LABORATORY

The Laboratory is located north of the Cleaning/Drawing areas, and adjacent to Strand Galvanizing 6F. The Laboratory was used as a quality assurance/quality control (QA/QC) laboratory for manufactured products. Based on the Site inventory performed in 1990, small quantities of chemicals and laboratory equipment were noted, as expected for a QA/QC laboratory. Currently, no equipment or chemicals were observed in this room, except for desks, the laboratory counters and sink drains. Paint was peeling from the walls and the ceilings were deteriorated.
5.12 BLACKSMITH/CARPENTER/PAINT SHOP

The Blacksmith/Carpenter/Paint shop are a series of attached buildings. All buildings have concrete floors. While some cracks were noted, the floor appeared to be of reasonable integrity. The floors were stained in all 3 buildings A floor utility box that possibly contained steamlines was also observed in the BlackSmith Shop. No other evidence of a release was observed.

5.13 BOILER ROOMS

The Boiler Rooms are located north of the Norwalk River, adjacent to Fabric Galvanizing Area Pan 3. The Boiler Rooms were a series of rooms including a high pressure boiler, low pressure boiler, generator room and water filter and pump house. Based on historical mapping and the 1990 Site inventory, miscellaneous chemicals associated with boiler operations were used and stored in these areas. Staining was noted on the floors, particularly below the boilers. The following additional items were noted:

- Trenches
- Asbestos insulation around boilers and piping
- Oil stains near cutoff fill pipes outside the Boiler Rooms along construction joints
- An excavated area, filled with sand, gravel and pieces of cement flooring in the generator room.

No other evidence of a release was observed.

5.14 NEW WAREHOUSE

The New Warehouse is located in the northwest corner of the facility and is the newest constructed building (1973). At the time of this Site visit, the New Warehouse was being used for limited storage of Gilbert & Bennett Manufacturing Company products, miscellaneous office furniture and equipment but most of the warehouse was empty. Four cardboard drums of virgin copper sulfate were noted. In general, the floors, ceilings and walls were intact and no evidence of a release was visible.

USTs removed in 1986 from other areas on-site, were temporarily staged outside of the New Warehouse on the northwest side. Stockpiled soil was also stored here. Propane
tanks were formerly located on the north side of the New Warehouse near the pond. The USTs and propane tanks have all been removed and the area is highly overgrown with weeds. A wooded area to the northeast of the New Warehouse was reportedly the location of propane overfill discharges. No evidence of a release (i.e. stressed vegetation or stained soils) were evident in any of these outdoor areas.

5.15 LIFT TRUCK GARAGE

The Lift Truck Garage is located just north of the Maintenance Building. This building had been used as a repair shop for the lift trucks. It was also used for storage of parts and supplies, oils and fluids and a solvent parts washing station was located in the Lift Truck Garage. Historically, propane fuel for forklifts was also stored outside of the Lift Truck Garage. The following additional items were observed during the site visit:

- Fire extinguishers
- Oxygen and acetylene cylinders
- Miscellaneous cylinders including propane and helium
- Compressed gas
- Empty drums
- Oil storage drums
- Floor lift (former location of UST-15, see section 5.3)
- Floor drain.

The integrity of the building was good overall but significant stains were observed on the floor.

5.16 NEUTRALIZING TANK

The Neutralizing Tank was located just north of the Norwalk River outside of the Lime Storage Area (CSA) and Boiler Rooms. Acidic wastewaters from the manufacturing process were equalized with lime in the Neutralization Tank. This neutralization system was part of the NPDES permitted treatment facility for the mill.

A containment berm was located around the tank, along the Norwalk River, however, there is an opening in the berm and the concrete slopes down toward the river. The tank is covered by a roof that was installed after shut-down and no liquid was observed within the tank. Iron-staining was visible on surfaces around the tank and iron-stained
sediment was visible along the banks and bed of the Norwalk River directly downstream of the Neutralization Tank.

5.17 PCB TRANSFORMERS STORAGE AND SPILL LOCATION

The main electrical substation (transformers and capacitors) is located just north of the Maintenance Building and was the location of a reported spill of PCB dielectric oils from one of the transformers (Section 4.3). PCB contaminated soil were excavated and disposed of off-site in accordance with regulatory requirements and the CTDEP was notified. Crushed stone surrounds the transformers at the main substation and around the transformer that formerly leaked. Transformers were also temporarily stored in a small room north of the Boiler Rooms, but have been removed. Gilbert & Bennett Manufacturing Company owns several other active pole mounted transformers (non-PCB) located throughout the site. These transformers are reported to have been labelled correctly and no visible evidence of a release was observed. Three PCB capacitor banks located in the substation are believed to still contain PCB oils. G&B is currently in the process of making arrangements for removal.

5.18 WASTE OIL STORAGE AREA

Waste oil was stored in the Mill Yard west of the Fabric Galvanizing Area - Pan #1 and #2. This area formerly stored drums of petroleum oil, water soluble oil, mineral spirits and solvents. A small waste oil spill (volume unspecified) on February 1, 1988 and a small (2 to 3 gallon) paint thinner spill on August 12, 1983 were reported in this area (see Section 4.0). The entire area is paved and no visible evidence of a release was observed in this area.

5.19 CSAs

As stated previously, 8 CSA areas are currently undergoing RCRA Closure. The following areas were inspected:

- Rod Storage Shed
- Outside the Rod Storage Shed
- Lime Room
- OMSA Building
- Soap Room
- Long Loom Room
- East Mill.

Each of these CSA areas are clearly delineated with orange flexible fencing and/or cones. No drums or containers were visible in any of these areas. Holes in the flooring were observed in these areas, which are attributed to the core samples taken as part of the RCRA Closure Site characterization activities. No evidence of a release was observed in these areas.

5.20 MILL YARD AREAS

CTDEP files contain allegations by third parties that some areas within the Mill Yard have been filled-in with "acid-ash", molten metal bath skimmings and, dross and miscellaneous scrap. Skimmings were also reportedly spread in the yard to provide traction for forklifts in the winter. The former location of the sulfuric acid and hydrochloric acid storage tanks was in the yard area, adjacent to the Cleaning House and excavation of former UST-10 and UST-11. The tank pads and berms are still in place, but the acid tanks have been removed. The paint is chipping off the pads and berms and there is iron staining within the bermed areas. Oil stains were noted on the pavement in an area adjacent to the berm. The Mill Yard is also the site of miscellaneous reported fuel oil spills (see Section 4.0). Other historic activities or equipment within the yard area included:

- A bermed wall along the Norwalk River to intercept seeping oil (See Section 5.3 - UST-12 and UST-13)
- Storage of equipment, rods, wire, steel, raw materials, products and material stockpiling.
- A "vitriol" tank (sulfuric acid)
- Lime Storage
- Sulfuric and hydrochloric acid tanks
- A dust collection system outside of Fabric Galvanizing Area Pan #3
- A "Copperas" (Copper sulfate) Building on the south(west) side of the Norwalk River outside of the rod baking area
- A "Fitchberg Engine/Rex Chemicals on Wheels" Building just north of the Maintenance Building
- Underground acid/wastewater collection piping
- Septic tanks and leaching fields for sanitary sewage.
These areas are all generally paved, and evidence of a release was not discernible. However, the pavement in this area has been disrupted due to UST excavations, construction seams and patched asphalt.

5.21 MAIN PARKING AREA

CTDEP files contain allegations by third parties that rolls of scrap wire, lead and zinc skimmings and "acid-ash" have been buried under the Main Parking Area on the south side of the facility. An alleged "acid pit" was reported at the southwest edge of the parking lot, under the Route 107 embankment. However, these allegations were not substantiated and no visible evidence of a release was observed. Also, there were reports of oil being dumped near the railroad tracks and this area was used to store equipment for handling the metallic waste. The Main Parking Area was the location of a former smelting building and galvanizing building. The entire area is paved and no visible evidence of a release was observed.
6.0 CONCLUSIONS AND RECOMMENDATIONS

As would be expected given the operation of a wire mesh and fence manufacturing facility from the late 1800's through 1989, some releases have occurred to interior buildings surfaces, and also to the ground and surface waters at the Site. A variety of remedial actions have been performed to date at the Site to address environmental issues. The ongoing RCRA Closure program will address any releases of hazardous constituents associated with the eight CSA's on-site. An on-going RFA will address the potential for release associated with the remaining site activities.

The following general conclusions can be made regarding the Site:

1. The facility is no longer in operation and has undergone substantial decommissioning. Consequently, the condition of the Site does not represent conditions during active manufacturing. In most of the buildings the equipment has been removed and the structures have somewhat deteriorated from a lack of heating and upkeep over the last four years. The presence of holes in the ceilings, both from deterioration and the former locations of vents and roof stacks, allows rainwater to enter into some of the buildings.

2. The Norwalk River was the ultimate receptor of NPDES permitted discharges, incidental spills or releases through floor drains, trenches, pits, crack or holes in the floors, stormwater runoff and presumably groundwater discharges. The nature and extent of indicator constituents in surface waters and sediments in the Norwalk River are being addressed as part of the RFA.

3. Septic systems are known to be located throughout the facility. Throughout the course of the facility's history, these septic systems may have sporadically received incidental releases of hazardous constituents. Any potential releases to the shallow groundwater via septic systems would presumably be ultimately discharged to the Norwalk River.

4. All previously identified USTs have either been removed or abandoned in place. Post-excavation sample results from removed USTs indicate that elevated concentrations of residual indicator constituents (i.e., TPH) may remain in the soil in some areas.

5. Probable asbestos insulation was noted throughout the facility. The identification of friable asbestos was not within the scope of this assessment. Further, lead paint is presumed in some of the buildings, based on the age of this facility. A lead paint survey or abatement program was not within the scope of this assessment both of these items should be addressed in future programs.

The overall condition of specific process areas is discussed below:
Drawing Room
Organically-based soap lubricants derived from animal fats were used in this area and incidental releases may have occurred through sumps or floor trenches.

Annealing/Cleaning Rooms
Activities in these process areas included the use of corrosive materials (acids). It has been reported that historically these areas may have had dirt floors. The integrity of the existing floors is poor. Consequently, these areas have had the potential for releases of these process constituents to the building subsoils.

Galvanizing Areas (Strand and Fabric)
Activities in these process areas included the use of lead, zinc, acid baths, flux rinse and soluble oil baths. These areas presumably were subject to releases of particulates from the process, that may have settled as dust in some of these areas. It was reported that historically some of these areas had earthen or wood plank floors. The existing concrete floors are also of suspect integrity. Consequently, these areas had the potential for release of process constituents to the building subsoils.

Reverse Twist and Welding Buildings
Hydraulic oils were used in the Reverse Twist and Welding Buildings and incidental releases may have occurred through trenches, floor drains or flooring in poor condition. The trench outside of the Reverse Twist reportedly also received oil discharges, but has been at least partially remediated.

Weaving Building
Hydraulic oils and grease associated with the machinery in this building may have been released through incidental spills through floor drains. In addition, sporadic or incidental release may have occurred due to the presence of a paint tower and a storage shed containing mixing vats for paints and lacquers at the Weaving Building. Post-excavation samples from the removal of UST-5 which is adjacent to the shed indicate residual concentrations of VOCs.
Maintenance Building

Half of the basement, which is currently being used as the Maintenance Shop, appears in good condition with some staining on the concrete floor. The other half, which has no floor is heavily stained.

OMSA Building

The overall condition of this building is good and there does not appear to have been any releases from processes in this area except possibly for the CSA area and the former fuel oil pump station.

Laboratory

Although the Laboratory is deteriorated, all of the chemicals formerly used or stored in this area were lab-packed and disposed of by a subcontractor during decommissioning and the room is essentially empty.

Blacksmith/Carpenter/Paint Shop

Oils, paints and residue staining was noted on the floors, however they were in generally good condition.

Boiler Room

The Boiler Rooms had historically been used for storage of boiler chemicals and inherently contained oils as part of their operations. Based on visual evidence and staining potential releases may have occurred through floor drains, trenches or overfill spills on exterior piping. The boilers are wrapped with asbestos insulation.

New Warehouse

No reported incidences or potential pathways for migration of a release are known inside of the New Warehouse. It still is used exclusively for stock and shipping. On the exterior of the New Warehouse in the far northwest corner, some potential for residual constituents in the underlying soils exists due to the temporary storage of removed USTs and the stockpiled soil from UST excavations.
Lift Truck Garage

There is potential for past releases through the floor drain and a waste oil UST in the Lift Truck Garage, based on historic activities. Currently, the floor drain and UST are filled with concrete.

Neutralization Tank

Releases may have occurred because of the presence of visible iron-staining in and around the river channel adjacent to the Neutralization Tank.

PCB Transformers

The transformers currently on-site are owned by Gilbert & Bennett Manufacturing Company and are reported not to contain PCB oils. A historic release of PCB-oil transformers appear to have been remediated in accordance with regulatory requirements.

CSAs

Any potential releases attributable to the 8 CSAs will be addressed under closure. Other potential sources of release to these areas are being addressed as part of the RFA.

Mill Yard Areas and Main Parking Area

Throughout the history of the G & B facility there has been filling, construction and demolition within the production areas and Main Parking Areas. In addition, the Site has undergone significant physical changes including building construction/demolition and was subject to a major flood event in 1955. Prior to the construction of the Route 107 overpass, the manufacturing process areas were also contiguous to the By-Product Management Area. The Mill Yard and Main Parking Areas are subject to reports of the use of process residues as fill materials. In addition, the current yard areas have not always been paved. Consequently, raw materials and process residues from material handling and storage, and particulates from process emissions may have accumulated in the underlying soils. After the Mill Yard Areas were paved, any potential air-borne particulates or other releases to the yard would have migrated through the storm drains to the Norwalk River.

Also, anywhere on the Site where materials such as products, raw materials or wastes were stored, may have been subject to potential releases. The migration pathways for these
incidental or reported releases would typically have been through storm drains in the paved areas to the Norwalk River.

The CSA Closure program will remediate contamination resulting from RCRA activities in each of the 8 CSAs. The on-going RFA study at the G&B facility should identify potential areas of concern and determine the existence of any releases of concern. Interim Corrective Measures will also be proposed as part of the RFA, if applicable, in accordance with the Consent Agreement and Final Order.
Appendix A

NPDES Permit
NPDES PERMIT

Gilbert & Bennett Manufacturing Company
No. Main Street
Georgetown, Conn. 06829

Re: DEP/WPC-117-002
Town of Redding
Norwalk River Watershed

Attention: David Geeza

This permit is issued in accordance with Section 22a-430 (e) of Chapter 446k, Connecticut General Statutes, and regulation adopted thereunder, as amended and Section 402(b) of the Clean Water Act, as amended, 33 USC 1251, et seq., and pursuant to an approval dated September 26, 1973, by the Administrator of the United States Environmental Protection Agency for the State of Connecticut to administer a N.P.D.E.S. permit program.

Your application for permit reissuance submitted by Gilbert & Bennett Manufacturing Co. on July 25, 1988, has been reviewed by the Connecticut Department of Environmental Protection.

The Commissioner of Environmental Protection (hereinafter "the Commissioner") has found that the system installed for the treatment of the discharge will protect the waters of the state from pollution.

The Commissioner has determined that Gilbert & Bennett Manufacturing Company is in full compliance with Order No. WC4526 entered on May 18, 1987. The Commissioner, acting under Section 22a-430, hereby permits Gilbert & Bennett Manufacturing Company to discharge metal finishing, contact, non-contact cooling and boiler blowdown wastewater in accordance with the following conditions:

1) The wastewater shall be collected, treated and discharged in accordance with the above referenced application and all approvals issued by the Commissioner or her agent for the discharges and/or activities authorized by or associated with this permit.

2) The discharges shall not exceed and shall otherwise conform to specific terms and conditions listed below. The discharges shall be monitored and results reported to the Director of Water Compliance by the end of the month after the month in which samples are taken according to the following schedule:

Phone:
165 Capitol Avenue • Hartford, Connecticut 06106
An Equal Opportunity Employer
A. Discharge Serial No. 001
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 11,000 gallons per day

B. Discharge Serial No. 002
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

C. Discharge Serial No. 003
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 69,000 gallons per day

D. Discharge Serial No. 004
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 1,100 gallons per day

E. Discharge Serial No. 005
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

F. Discharge Serial No. 006
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 700 gallons per day

G. Discharge Serial No. 007
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 700 gallons per day

H. Discharge Serial No. 008A
Description: Contact cooling water (Zinc Quench) Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 7,800 gallons per day

1. The pH of the discharge shall not be less than 6.0 or greater than 9.0 (Code 609).

2. The discharges listed in this permit shall not contain or cause in the receiving stream a visible oil sheen or floating solids.
(3) The discharges listed in this permit shall not cause visible discoloration or foaming in the receiving waters beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(4) The temperatures of the discharges listed in this permit shall not increase the temperature of the receiving stream above 85°F or raise the normal temperature of the receiving stream more than 4°F beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(5) The maximum daily concentration specified shall not be exceeded by more than a factor of 1.5, at any time, as measured by a grab sample.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
<th>Average Monthly Limits</th>
<th>Maximum Daily Limits</th>
<th>Minimum Frequency of Sampling</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>127</td>
<td>1.0 mg/l</td>
<td>2.0 mg/l</td>
<td>Weekly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>pH</td>
<td>609</td>
<td>-</td>
<td>-</td>
<td>Weekly</td>
<td>Range during Composite</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>686</td>
<td>SEE PARAGRAPH 3)</td>
<td>-</td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>687</td>
<td>SEE PARAGRAPH 4)</td>
<td>-</td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
</tbody>
</table>

(a) The permittee shall record the total flow (Code 626) and the number of hours of discharge (Code 629) for each day of sample collection.

I. Discharge Serial No. 008B
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 200 gallons per day

J. Discharge Serial No. 010
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

K. Discharge Serial No. 011
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

L. Discharge Serial No. 012
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

M. Discharge Serial No. 013
Description: Sink drains Code 1250000
Average Daily Flow: Discharge eliminated

N. Discharge Serial No. 014
Description: Boiler blowdown Code 1500000
Average Daily Flow: Discharge eliminated

O. Discharge Serial No. 014A
Description: Boiler blowdown Code 1500000
Average Daily Flow: Discharge eliminated

P. Discharge Serial No. 015
Description: Deionizer Regeneration wastewater
Code 1190000
Average Daily Flow: Discharge eliminated

Q. Discharge Serial No. 015
Description: Boiler blowdown Code 1500000
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 240 gallons per day

R. Discharge Serial No. 016
Description: Contact cooling water (Lead Quench)
Code 102000a
Average Daily Flow: Discharge eliminated

S. Discharge Serial No. 017
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 400 gallons per day

T. Discharge Serial No. 018
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 5,000 gallons per day

U. Discharge Serial No. 019
Description: Contact cooling water (Zinc Quench) Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 21,600 gallons per day

(1) The pH of the discharge shall not be less than 6.0 or
greater than 9.0 (Code 609).

(2) The discharge shall not contain or cause in the receiving
stream a visible oil sheen or floating solids.
(3) The discharge shall not cause visible discoloration or foaming in the receiving waters beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(4) The temperature of the discharge shall not increase the temperature of the receiving stream above 85°F or raise the normal temperature of the receiving stream more than 4°F beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(5) The maximum daily concentration specified shall not be exceeded by more than a factor of 1.5, at any time, as measured by a grab sample.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
<th>Average Monthly Limits</th>
<th>Maximum Daily Limits</th>
<th>Minimum Frequency of Sampling</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>127</td>
<td>1.0 mg/l</td>
<td>2.0 mg/l</td>
<td>Weekly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>pH</td>
<td>609</td>
<td>-----</td>
<td>-----</td>
<td>Weekly</td>
<td>Range during Composite</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>686</td>
<td>SEE PARAGRAPH 3)</td>
<td></td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>687</td>
<td>SEE PARAGRAPH 4)</td>
<td></td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
</tbody>
</table>

(a) The permittee shall record the total flow (Code 626) and the number of hours of discharge (Code 629) for each day of sample collection.

V. Discharge Serial No. 020
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

W. Discharge Serial No. 021
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

X. Discharge Serial No. 022
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

Y. Discharge Serial No. 023
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

Z. Discharge Serial No. 024
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated
AA. Discharge Serial No. 025
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 500 gallons per day

BB. Discharge Serial No. 026
Description: Metal finishing wastewater Code 101034z
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 18,000 gallons per day
Maximum Daily Flow: 29,000 gallons per day

(1) The pH of the discharge shall not be less than 6.0 or greater than 9.0 (Code 609).

(2) The discharge shall not contain or cause in the receiving stream a visible oil sheen or floating solids.

(3) The discharge shall not cause visible discoloration or foaming in the receiving waters beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(4) The temperature of the discharge shall not increase the temperature of the receiving stream above 85°F or raise the normal temperature of the receiving stream more than 4°F beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(5) The maximum daily concentration specified shall not be exceeded by more than a factor of 1.5, at any time, as measured by a grab sample.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Average Code</th>
<th>Monthly Limits</th>
<th>Maximum Code</th>
<th>Daily Limits</th>
<th>Minimum Code</th>
<th>Frequency of Sampling</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iron</td>
<td>113</td>
<td>3.0 mg/l</td>
<td>5.0 mg/l</td>
<td>Weekly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>114</td>
<td>0.1 mg/l</td>
<td>0.5 mg/l</td>
<td>Weekly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Zinc</td>
<td>127</td>
<td>1.0 mg/l</td>
<td>2.0 mg/l</td>
<td>Weekly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Total Suspended Solids</td>
<td>614</td>
<td>20.0 mg/l</td>
<td>30.0 mg/l</td>
<td>Weekly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>609</td>
<td>-----</td>
<td>-----</td>
<td>Weekly</td>
<td>Range during Composite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ammonia</td>
<td>201</td>
<td>-----</td>
<td>12.0 mg/l</td>
<td>Weekly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>686</td>
<td>SEE PARAGRAPH 3)</td>
<td>SEE PARAGRAPH 4)</td>
<td>Quarterly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>687</td>
<td>SEE PARAGRAPH 4)</td>
<td>SEE PARAGRAPH 4)</td>
<td>Quarterly</td>
<td>Daily</td>
<td>Composite</td>
<td></td>
</tr>
</tbody>
</table>

(a) The permittee shall record the total flow (Code 626) and the number of hours of discharge (Code 629) for each day of sample collection.
CC. Discharge Serial No. 027
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

DD. Discharge Serial No. 028
Description: Non-contact cooling water Code 102000a
Average Daily Flow: Discharge eliminated

EE. Discharge Serial No. 029A
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 87,000 gallons per day
Maximum Daily Flow: 130,000 gallons per day

FF. Discharge Serial No. 029B
Description: Contact cooling water (Zinc Quench) Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 9,600 gallons per day
Maximum Daily Flow: 10,200 gallons per day

(1) The pH of the discharge shall not be less than 6.0 or greater than 9.0 (Code 609).

(2) The discharge shall not contain or cause in the receiving stream a visible oil sheen or floating solids.

(3) The discharge shall not cause visible discoloration or foaming in the receiving waters beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(4) The temperature of the discharge shall not increase the temperature of the receiving stream above 85°F or raise the normal temperature of the receiving stream more than 4°F beyond any zone of influence as provided in the "Connecticut Water Quality Standards & Criteria" as amended.

(5) The maximum daily concentration specified shall not be exceeded by more than a factor of 1.5, at any time, as measured by a grab sample.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Code</th>
<th>Average Monthly Limits</th>
<th>Maximum Daily Limits</th>
<th>Minimum Frequency of Sampling</th>
<th>Sample Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zinc</td>
<td>127</td>
<td>1.0 mg/l</td>
<td>2.0 mg/l</td>
<td>Weekly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>pH</td>
<td>609</td>
<td>----</td>
<td>----</td>
<td>Weekly</td>
<td>Range during Composite</td>
</tr>
<tr>
<td>Acute Toxicity</td>
<td>686</td>
<td>SEE PARAGRAPH 3)</td>
<td></td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
<tr>
<td>Chronic Toxicity</td>
<td>687</td>
<td>SEE PARAGRAPH 4)</td>
<td></td>
<td>Quarterly</td>
<td>Daily Composite</td>
</tr>
</tbody>
</table>
(a) The permittee shall record the total flow (Code 626) and the number of hours of discharge (Code 629) for each day of sample collection.

(b) The report shall include a detailed explanation of any violations of the limitations specified above.

GG. Discharge Serial No. 030
Description: Non-contact cooling water Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 7,000 gallons per day

HH. Discharge Serial No. 031
Description: Non-contact cooling water Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 48,000 gallons per day

II. Discharge Serial No. 032
Description: Non-contact cooling water Code 102000b
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 9,000 gallons per day

JJ. Discharge Serial No. 033
Description: Non-contact cooling water Code 102000a
Receiving Stream: Norwalk River (Basin Code 7300)
Present/Future Water Quality Standard: B/B
Average Daily Flow: 500 gallons per day

3) Effective immediately, a daily flow proportioned composite sample of the effluent from discharge numbers 008A, 019, 026 and 029B shall not exhibit acute toxicity in the receiving waterbody.

(a) Dilution equivalent to 28,017 gallons per hour (gph) for outfalls 008A, 019, 026 and 029B are allocated to a zone of influence for assimilation of toxicity. These allocations shall be used to calculate the instream waste concentration (IWC) according to the formula:

\[
IWC = \frac{\text{average daily flow}}{(\text{average daily flow} + \text{allocated zone of influence flow})}
\]

(b) In lieu of average daily flow, the mean effluent flow rate for the previous 30 operating days may be used to calculate the instream waste concentration provided the permittee maintains an accurate record of the total flow and number of hours of discharge for each operating day and provided that the flow rate for any one operating day used in calculating the mean does not exceed the mean flow by more than twenty-five percent (25%).
(c) Compliance with this permit condition shall be achieved when the LC50 value for the effluent is greater than three (3) times the IWC.

(d) Monitoring to determine compliance with this limit shall be performed Quarterly (January, April, July, October) following the toxicity testing protocol for static acute toxicity tests in "Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms" (EPA 600/4-85/013) with the following specifications:

(i) Neonatal Daphnia pulex (less than 24 hours old) shall be used as test organisms.

(ii) Synthetic freshwater prepared as described in EPA 600/4-85/013 and adjusted to a hardness of 50 mg/l as CaCO3 shall be used as dilution water in the tests.

(iii) Test duration shall be 48 hours for Daphnia pulex.

4) Effective January 31, 1990 and thereafter a daily flow proportioned composite sample of the effluent from discharge numbers 008A, 019, 026 and 029B shall not exhibit chronic toxicity in the receiving waterbody.

(a) Dilution equivalent to 28,017 gallons per hour (gph) for outfalls 008A, 019, 026 and 029B are allocated to a zone of influence for assimilation of toxicity. These allocations shall be used to calculate the instream waste concentration (IWC) according to the formula:

\[
\text{IWC} = \frac{\text{average daily flow}}{\text{average daily flow} + \text{allocated zone of influence flow}}
\]

(b) In lieu of average daily flow, the mean effluent flow rate for the previous 30 operating days may be used to calculate the instream waste concentration provided the permittee maintains an accurate record of the total flow and number of hours of discharge for each operating day and provided that the flow rate for any one operating day used in calculating the mean does not exceed the mean flow by more than twenty-five percent (25%).

(c) Compliance with this permit condition shall be achieved when there is no significant mortality in a daily composite of the effluent at a concentration equal to or greater than the calculated NOAEL (NOAEL = IWC x 20/3 up to 100% for chronic protection) as determined by the pass/fail methodology in Section 22a-430-3(j)(7)(A) of the Regulations of Connecticut State Agencies.
(d) Monitoring to determine compliance with this limit shall be performed Quarterly (January, April, July, October) following the toxicity testing protocol for static acute toxicity tests in "Methods for Measuring the Acute Toxicity of Effluents to Freshwater and Marine Organisms" (EPA 600/4-85/013) with the following specifications:

(i) Neonatal Daphnia pulex (less than 24 hours old) shall be used as test organisms.

(ii) Synthetic freshwater prepared as described in EPA 600/4-85/013 and adjusted to a hardness of 50 mg/l as CaCO3 shall be used as dilution water in the tests.

(iii) Test duration shall be 48 hours for Daphnia pulex.

5) (a) In determining LC50 values, five (5) test concentrations, in duplicate, shall be utilized.

(b) The LC50 value shall be determined by the computational method (Binomial Distribution, Probit Analysis, Moving Average Angle, Spearman-Karber) which yields the smallest 95% confidence interval and LC50 value which is consistent with the dose-response data.

(c) Any test in which the survival of test organisms is less than ninety (90) percent in each replicate control test chamber or failure to achieve test conditions as specified in Section 22a-430-3(j)(7)(A) of the Regulations of Connecticut State Agencies, such as maintenance of appropriate environmental controls, shall constitute an invalid test and will require immediate retesting. Failure to submit valid test results constitutes a permit violation.

(d) Results of the toxicity tests required as part of this permit condition will be entered on the Discharge Monitoring Report (DMR) for the month in which it was performed, using the appropriate parameter code. Additionally, complete and accurate test data, including all supporting chemical/physical measurements performed in association with the toxicity tests, as well as dose/response data shall be entered on the Aquatic Toxicity Monitoring Report form (ATMR). The ATMR shall be sent to the following address:

Aquatic Toxicity
Connecticut Department of Environmental Protection
Water Compliance Unit
122 Washington Street
Hartford, CT 06106

(e) If any test result indicates that the maximum daily toxicity limit for the effluent has been exceeded, a second sample of the effluent shall be collected and tested as described above and the
results reported to DEP within 30 days of the receipt of the first set of test results.

(f) If any two consecutive test results or any three test results in a single year indicate that the maximum daily toxicity limit has been exceeded, the permittee shall immediately take all reasonable steps to eliminate toxicity wherever possible and shall submit a report for the review and approval of the Commissioner in accordance with Section 22a-430-3(j)(10)(c) of the Regulations of Connecticut State Agencies describing proposed steps to eliminate the toxic impact of the discharge on the receiving waterbody. Such a report shall include a proposed time schedule to accomplish toxicity reduction.

6) On or before April 30, 1989, Gilbert & Bennett Manufacturing Co. shall submit for the review and approval of the Commissioner a report containing the results of chemical analyses of all non-contact cooling water discharges excluding outfalls 001, 003, 029A and 031. Chemical analyses shall include, but not be limited to, the following parameters: pH, specific conductance, total residual chlorine, ammonia (as N), surfactants, hardness, copper, nickel, zinc, lead, oil and grease and total suspended solids.

7) The Commissioner of Environmental Protection reserves the right to change the parameter limitations to compensate for additional waste loads impacting the Norwalk River's zone of influence for Gilbert & Bennett Manufacturing Company's process discharges.

This permit shall be considered as the permit required by Section 402 of the Federal Water Pollution Control Act and Section 22a-430 of the Connecticut General Statutes and shall expire on April 24, 1994.

This permit shall be subject to the following sections of the Regulations of Connecticut State Agencies which are hereby incorporated into this permit:

Section 22a-430-3 General Conditions

(a) Definitions
(b) General
(c) Inspection and Entry
(d) Effect of a Permit
(e) Duty
(f) Proper Operation and Maintenance
(g) Sludge Disposal
(h) Duty to Mitigate
(i) Facility Modifications; Notification
(j) Monitoring, Records and Reporting Requirements
(k) Bypass
(l) Conditions Applicable to POTWs
(m) Effluent Limitation Violations (Upsets)
(n) Enforcement
(o) Resource Conservation
(p) Spill Prevention and Control
(q) Instrumentation, Alarms, Flow Recorders
(r) Equalization

22a-430-4 Procedures and Criteria

(a) Duty to Apply
(b) Duty to Reapply
(c) Application Requirements
(d) Preliminary Review
(e) Tentative Determination
(f) Draft Permits, Fact Sheets
(g) Public Notice, Notice of Hearing
(h) Public Comments
(i) Final Determination
(j) Public Hearings
(k) Submission of Plans and Specifications, Approval
(l) Establishing Effluent Limitations and Conditions
(m) Case by Case Determinations
(n) Permit issuance or renewal
(o) Permit Transfer
(p) Permit revocation, denial or modification
(q) Variances
(r) Secondary Treatment Requirements
(s) Treatment Requirements for Metals and Cyanide
(t) Discharges to POTWs - Prohibitions

Your attention is especially drawn to the notification requirements of subsection (i)(2), (i)(3), (j)(6), (j)(7)(C), (j)(8)(O), (D), (E), and (F), (k)(3) and (4) and (l)(2) of Section 22a-430-3.

This Permit requires the payment of a compliance determination fee annually as set forth in Section 22a-430-7 of the Regulations of Connecticut State Agencies.

The Commissioner reserves the right to make appropriate revisions to the permit in order to establish any appropriate effluent limitations, schedules of compliance, or other provisions which may be authorized under the Clean Water Act or the Connecticut General Statutes or regulations adopted thereunder, as amended. The permit as modified or renewed under this paragraph may also contain any other requirements of the Clean Water Act or Connecticut General Statutes or regulations adopted thereunder which are then applicable.

Entered as a Permit of the Commissioner on the 24th day of April, 1989.

[Signature]
John W. Anderson
Deputy Commissioner

Application No. 88-222
NPDES GT0002917
ORDER NO. WC 9060
Appendix B

PCB Documentation
December 3, 1986

John M. Martin, President
The Gilbert & Bennett Manufacturing Company
North Main Street
Georgetown, CT 06829

In re Docket No. TSCA-I-87-1014

Dear Mr. Martin:

Enclosed is a complaint resulting from an inspection of your Georgetown, Connecticut facility on February 25, 1986 by the Connecticut Department of Environmental Protection. The complaint seeks a penalty for violation of EPA's polychlorinated biphenyls regulations, 40 CFR Part 761.

I suggest that you read the complaint and the enclosed rules of practice carefully to find the options available to you in responding to this action. Whether or not you choose to request a hearing, you may wish an informal conference to discuss the matter with EPA representatives.

Please bear in mind that failure to provide a written answer to this complaint, within 20 days of receipt, will constitute an admission of the allegations contained in the complaint and will result in the issuance of a default order imposing the penalty proposed in the complaint without further proceedings.

It is the practice of this office to inform the press of the issuance of administrative complaints.

Sincerely yours,

[Signature]
Louis F. Gitto
Director
Air Management Division
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
BEFORE THE ADMINISTRATOR

In re)
THE GILBERT & BENNETT) Docket No. TSCA-I-87-1014
MANUFACTURING COMPANY) COMPLAINT AND
Georgetown, CT 06829,) NOTICE OF OPPORTUNITY
Respondent.) FOR HEARING

This is a civil action for the assessment of a penalty, pursuant to Section 16(a) of the Toxic Substances Control Act ("TSCA"), 15 U.S.C § 2615(a).

COMPLAINT

Allegations

(1) Respondent is a Connecticut corporation, which operates a facility in Georgetown, Connecticut, where it manufactures fabricated wire products.

(2) In its fiscal year next prior to that in which the date February 25, 1986 occurred, respondent's gross income exceeded ten million dollars.

(3) On February 25, 1986, a duly designated representative of EPA's Administrator inspected the Georgetown facility, after presenting appropriate credentials and a written notice to respondent's director of engineering.

(4) Among the items present at the Georgetown facility on that day was a "PCB Transformer," as defined at 40 CFR 761.3, which was identified by respondent as "AC S/N 1850716."
Count I (unauthorized use)

(5) Respondent had failed to register this PCB Transformer with fire response personnel with primary jurisdiction, as required by 40 CFR 761.30(a)(1)(vi), 50 FR 29,200 (July 17, 1985).

(6) Respondent's use of "PCBs," as also defined at Section 761.3, in this transformer was thus not authorized by Section 761.30, and was prohibited by 40 CFR 761.20(a).

Count II (disposal)

(7) Prior to February 25, 1986, PCBs at a concentration of 50 ppm or greater had leaked from this transformer, and had spilled onto the ground.

(8) These spills constituted the disposal of PCBs. 40 CFR 761.60(d).

(9) This disposal of PCBs violated 40 CFR 761.60(a).

Count III (marking)

(10) Also present at the Georgetown facility on February 25, 1986 were thirty-six "large high voltage capacitors," as also defined at Section 761.3.

(11) Each of these capacitors contained PCBs.

(12) None of these capacitors was marked as illustrated in Figure 1, 40 CFR 761.45(a) (the "Large PCB Mark"), in violation of 40 CFR 761.40(a)(3).
Count IV (marking)

(14) On February 25, 1986, the means of access to the PCB Transformer alleged in paragraph (4), above, was not marked with the Large PCB Mark, in violation of 40 CFR 761.40(j), 50 FR 29,201 (July 17, 1985).

Count V (records)

(15) Since at least 1980, respondent was using or storing at one time at the Georgetown facility at least 45 kilograms (99.4 pounds) of PCBs contained in at least one PCB Transformer.

(16) As of February 25, 1986, respondent had neither developed nor maintained records on the disposition of PCBs and "PCB Items," as also defined at Section 761.3, at the Georgetown facility, in violation of 40 CFR 761.180(a).

(17) As of February 25, 1986, respondent had never prepared an annual document for the Georgetown facility, also in violation of Section 761.180(a).

Proposed Civil Penalty

Based on the facts recited above, and on the nature, circumstances, extent and gravity of the above-cited violations and, with respect to respondent, its ability to continue to do business, any history of prior such violations, the degree of culpability, and such other matters as justice may require, the Regional
Administrator, the "complainant," as defined at 40 CFR 22.03(a), proposes to assess a civil penalty against respondent in the amount of twenty-three thousand eight hundred dollars ($23,800) for failure to comply with the use, disposal, marking, and record-keeping requirements promulgated under TSCA. For each violation, the proposed penalty is as follows:

Count I (unauthorized use): six thousand dollars ($6,000);
Count II (disposal): five thousand dollars ($5,000);
Count III (marking): one thousand five hundred dollars ($1,500);
Count IV (marking): ten thousand dollars ($10,000); and
Count V (records): one thousand three hundred dollars ($1,300).

Payment may be made by cashier's or certified check, payable to the "Treasurer, United States of America," and forwarded to:

EPA - Region I
P.O. Box 360197M
Pittsburgh, PA 15251.

OPPORTUNITY TO REQUEST A HEARING

As provided by Section 16(a) of TSCA, and in accordance with 5 U.S.C. § 554, respondent has a right to request a hearing on the issues raised in this complaint. Any such hearing would be conducted in accordance with EPA's Consolidated Rules of Practice,
40 CFR Part 22, a copy of which is included with this complaint.

A request for a hearing must be incorporated in a written answer filed with

Regional Hearing Clerk (RRC-2203)
Environmental Protection Agency
John F. Kennedy Federal Building
Boston, Massachusetts 02203

within twenty (20) days of receipt of this complaint. See 40 CFR 22.15 for the required contents of an answer.

If respondent fails to file a timely answer to this complaint, respondent may be found in default.

Whether or not respondent requests a hearing, respondent may confer with Gerald M. Levy, Chief, Office of Pesticides and Toxic Substances, (617) 565-3744, concerning the alleged violations or the amount of the proposed penalties. Such a conference allows respondent an opportunity to respond to the charges informally, and to provide whatever additional information may be relevant to the disposition of this matter. Where appropriate, the amount of the proposed penalties may be modified. Where the circumstances warrant, a recommendation that the charges be dismissed may be made to the Regional Administrator. Any settlement shall be made final by a written consent agreement and order, which must be approved by the Regional Administrator. Such an agreement would constitute a waiver of respondent's right to request a hearing and any matters stipulated
to therein.

Your attorney is encouraged to contact George R. Ciampa, EPA's Assistant Regional Counsel, (617) 565-3325, for discussion of the legal matters relating to this complaint.

Please note that a request for an informal settlement conference does not enlarge the twenty-day period within which a written answer must be submitted in order to avoid default.

Paul Keough, Acting
Michael R. Deland
Regional Administrator
EPA Region I

Date: 11-13-86
Docket No. TSCA-I-87-1014

CERTIFICATE OF SERVICE

I certify that I filed the original and one copy of the foregoing complaint with the regional hearing clerk, and that I mailed a copy hereof to the respondent, together with a copy of the rules of practice, by certified mail, return receipt requested, all this 3rd day of December, 1986.

Dorothy M. Lawrence
Office of Regional Counsel
EPA Region I
February 19, 1987

George R. Ciampa, Esq.
U.S. Environmental Protection Agency
Region I
J.F. Kennedy Federal Building
Boston, MA 02203

Re: Docket No. TSCA-I-87-1014

Dear Mr. Ciampa:

Enclosed are two (2) documents. First, an executed original and two (2) copies of a Consent Agreement and Order ("Agreement") as we have previously discussed to resolve the referenced administrative matter. Second, a Fourth Stipulation for Extension of Time to provide sufficient time for the Agency to complete the execution of the Agreement and handle matters related to the entry of the Agreement while preserving the right of Gilbert and Bennett to answer the Complaint in the event there is some problem.

I certainly would not expect that either of us would experience any difficulty at this point and look forward to hearing from you as soon as reasonably possible that the matter is concluded from the Agency's standpoint. I will proceed to advise Gilbert and Bennett to submit the sum mentioned in the Order within thirty (30) days of our receipt of notice of the entry of the Order.
Should there be any question or need to discuss this matter, please feel free to contact me at my direct dial number above.

Sincerely,

William A. Wichers II

WAW:sf

Enclosures

Federal Express

cc: John M. Martin w/enclosures
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY
BEFORE THE ADMINISTRATOR

In re
THE GILBERT & BENNETT MANUFACTURING COMPANY
Georgetown, CT 06829,
Respondent.

Docket No. TSCA-I-87-1014

CONSENT AGREEMENT AND ORDER

This civil action for the assessment of a penalty, pursuant to Section 16(a) of the Toxic Substances Control Act, 15 U.S.C. § 2615(a), was commenced by EPA's complaint, filed on December 3, 1986, pursuant to 40 CFR 22.13.

Agreement

(1) The complaint alleged that

(a) respondent is a Connecticut corporation, which operates a facility in Georgetown, Connecticut, where it manufactures fabricated wire products;

(b) among the items present at the Georgetown facility on February 25, 1986 was a "PCB Transformer," as defined at 40 CFR 761.3;

(c) respondent had failed to register this PCB Transformer with fire response personnel with primary jurisdiction, as required by 40 CFR 761.30(a)(1)(vi), and that respondent's use of "PCBs," as also defined at Section 761.3, in this transformer was thus not authorized by Section 761.30, and was prohibited by 40 CFR 761.20(a);

(d) prior to February 25, 1986, PCBs at a concentration of 50 ppm or greater had leaked from this transformer, and had spilled onto the ground, in violation of 40 CFR 761.60(a);
(e) also present at the Georgetown facility on February 25, 1986 were thirty-six "large high voltage capacitors," as also defined at Section 761.3, each of which contained PCBs, but that none of these capacitors was marked as illustrated in Figure 1, 40 CFR 761.45(a) (the "Large PCB Mark") in violation of 40 CFR 761.40(a)(3);

(f) the means of access to the PCB Transformer alleged in ¶ (1)(b), above, of this agreement was not marked with the Large PCB Mark, in violation of 40 CFR 761.40(j); and that

(g) respondent had neither developed nor maintained records on the disposition of PCBs and "PCB Items," as also defined at Section 761.3, at the Georgetown facility, and had never prepared an annual document for the Georgetown facility, in violation of 40 CFR 761.180(a).

(2) Respondent represents that, in April 1986, at a cost in excess of fifteen thousand dollars ($15,000), it caused the transformer's dielectric fluid to be de-chlorinated, which lowered its PCB content to below 50 ppm.

(3) Respondent warrants that its Georgetown facility is now in compliance with all applicable requirements of 40 CFR Part 761.

(4) This agreement is a complete resolution of all issues arising from the inspection of the Georgetown facility on February 25, 1986 by a duly designated representative of EPA's Administrator. EPA covenants to take no additional civil judicial or administrative action against respondent for the violations alleged in the complaint, other than for the purpose of enforcing the following order.
(5) No answer having yet been filed (through agreement of the parties,) then, provided that the Regional Administrator approves this agreement and issues the following order, the complaint herein is withdrawn without prejudice. 40 CFR 22.14(e).

(6) For the purpose of this proceeding, respondent admits the jurisdictional allegations of the complaint; neither admits nor denies the allegations set out in ¶ 1, above; and consents to the issuance of the following order, waiving its right to a hearing.

Order

Within thirty (30) days of the issuance of this order, respondent shall submit to

EPA-Region I
P.O. Box 360197M
Pittsburgh, PA 15251

a cashier's or certified check, to the order of the "Treasurer, United States of America," in the sum of fourteen thousand two hundred eighty dollars ($14,280).
ENVIROMENTAL PROTECTION AGENCY

By: Louis F. Gitto, Director
Air Management Division
EPA Region I

Date: 1/21/87

By: George R. Ciampa
Assistant Regional Counsel
EPA Region I

THE GILBERT & BENNETT MANUFACTURING COMPANY

By: William A. Wichers II, Its Attorney
Honigman Miller Schwartz and Cohn
Detroit, Michigan

Date: 2/9/87
The above agreement is approved, and order issued.

Michael R. Deland
Regional Administrator
EPA Region I

Date: ________
DEPARTMENT OF ENVIRONMENTAL PROTECTION
Hazardous Waste MANIFEST PROGRAM, State Office Building
Hartford, CT 06106

For State Use Only

UNIFORM HAZARDOUS WASTE MANIFEST

Generator's US EPA ID No.
CT D00116277549036

1. Generator's Name and Mailing Address
Gilbert & Bennett
North Main St
Georgetown, CT 06878

2. B. G.S.I. (Gen. Site Address)
Same

3. Generator's Phone (203) 544-8323

4. US EPA ID Number

5. Transporter 1 Company Name
Tri State Motor Transit

6. US EPA ID Number

7. Transporter 2 Company Name

8. US EPA ID Number

9. Designated Facility Name and Site Address
ENS CO & Co
Industrial Drive
White Bluff, TN 37221

10. Designated Facility's ID (Not Required)

11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)

12. Containers

13. Total Quantity

14. Unit Wt./Vol.

15. Hazardous Substance Liquid, MOS; ORM-E

17. Additional Descriptions for Materials Listed Above
Not a RCRA Hazardous Waste

18. Handling Codes for Wastes Listed Above
a. Final b. Interim c. Final d. Interim

19. Special Handling Instructions and Additional Information
Load = 61669

20. Facility Owner or Operator: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19.

21. Acknowledgement of Receipt of Materials

22. Additional Information

23. Discrepancy Indication Space

Please type (or print) this form designed for use on a 12-point typewriter.

A. State Manifest Document Number
CT F 0079907

B. G.S.I. (Gen. Site Address)

C. S.T.I. (Trans. Lic Plate #)

D. Tran. Phone

E. S.T.I. (Trans. Lic Plate #)

F. Tran. Phone

G. State Facility's ID (Not Required)

H. Facility's Phone

I. EPA

J. STATE

K. STATE

L. STATE

M. STATE

N. STATE

O. STATE

P. STATE

Q. STATE

R. STATE

S. STATE

T. STATE

U. STATE

V. STATE

W. STATE

X. STATE

Y. STATE

Z. STATE

COPY 3: FACILITY TO GENERATOR

F0079907
STATE OF CONNECTICUT
DEPARTMENT OF ENVIRONMENTAL PROTECTION
Hazardous Waste MANIFEST SECTION, State Office Building, Hartford, CT 06106

UNIFORM HAZARDOUS WASTE MANIFEST

1. Generator's US EPA ID No. CTD 001162775

2. Page 1 of 1

3. GENERATOR'S Name and Mailing Address
 Gilbert & Bennett
 North Main Street P.O.Box 385, Georgetown, CT 06829

4. GENERATOR'S Phone (203) 544-8323

5. TRANSPORTER 1 Company Name
 National Oil Service, Inc
 CTD097221436

6. US EPA ID Number
 National Oil Service, Inc
 CTD097221436

7. TRANSPORTER 2 Company Name
 Oil Recovery
 MAD000791515

8. US EPA ID Number
 Oil Recovery
 MAD000791515

9. DESIGNATED FACILITY Name and Site Address
 Three C Electrical Testing Co.
 260 Pleasant St.
 Ashland, MA 01721
 MAD 058887-677

10. US EPA ID Number
 Three C Electrical Testing Co.
 MAD 058887-677

11. US DOT Description (Including Proper Shipping Name, Hazard Class, and ID Number)
 Waste Polychlorinated Biphenals
 ORM-E UN 2315

12. Containers
 a. Type
 b. Quantity
 c. Waste No.
 d. Waste No.

13. Total Quantity
 165 G

14. Unit Wt./Vol.
 G

15. HANDLING CODES for Wastes Listed Above

16. SPECIAL HANDLING Instructions and Additional Information

17. TRANSPORTER 1 Acknowledgment of Receipt of Manifest
 Printed/Typed Name:
Harold A. Chippewa
 Signature: Harold A. Chippewa
 Date: 09/23/06

18. TRANSPORTER 2 Acknowledgment of Receipt of Manifest
 Printed/Typed Name: Bradly Conner
 Signature: Bradly Conner
 Date: 09/23/06

19. DISCREPANCY Indication: Facility has been changed per verbal authorization by Generator.

20. FACILITY OWNER OR OPERATOR: Certification of receipt of hazardous materials covered by this manifest except as noted in Item 19.
 Printed/Typed Name: Jason J. Gonzalez
 Signature: Jason J. Gonzalez
 Date: 09/24/06

Information in the shaded areas is not required by Federal law, but may be required by State law.

A. State Manifest Document Number
 CT B 0015729

B. State Gen-ID
 same

C. State Tran. ID
 G12467

D. Tran. Phone (203) 932-8461

E. State Tran. ID
 AK60144

F. Tran. Phone (413) 437-2949

G. State Facility's ID
 same

H. Facility's Phone (413) 881-3911

Designation State: Mailed by ISDF
Appendix C

UST Analytical Results
Chain of Custody Record

Client Name: Gilbert & Bennett
Project: Gilbert & Bennett
Samplers Signature: [Signature]

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Sample Location</th>
<th>Date</th>
<th>Time</th>
<th>Analysis Req'</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Weld Trench</td>
<td>1/1</td>
<td>2:30</td>
<td>418.1</td>
</tr>
<tr>
<td>B</td>
<td>Weld Trench</td>
<td>1/1</td>
<td>2:30</td>
<td>418.1</td>
</tr>
<tr>
<td>C</td>
<td>Weld Trench</td>
<td>1/1</td>
<td>3:00</td>
<td>418.1</td>
</tr>
</tbody>
</table>

Relinquished By: [Signature]
Date: 1-9-91
Time: 2:30

Received By: [Signature]
Date: 1-9-91
Time: 2:00

Relinquished By:
Date:
Time:

Received By:
Date:
Time:

Method of Shipment: Water Control Labs
TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGETABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

*** REFERENCES

2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES. EPA 600/4-79-200. REVISED MARCH 1983.

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR) 118 MG/KG 2.00 418.1
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
REferred by:

DJP Associates Ltd.
609 West Johnson Ave
Cheshire, CT 06410

Final Report

*** General Information

Collector: DJP

*** Organic Testing Soil
PET HYDROCARBON (IR) 293 MG/KG 2.00 418.1
DETECTION LIMIT 10X THE LIMIT INDICATED.
*** THIS IS A FINAL REPORT. ***
CHAIN OF CUSTODY RECORD

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Tank 9A</td>
<td>11/21</td>
<td>1:00</td>
<td>4/18.1 71</td>
</tr>
<tr>
<td>09</td>
<td>Tank 9B</td>
<td>11/21</td>
<td>1:15</td>
<td>4/18.1 49</td>
</tr>
<tr>
<td>10</td>
<td>Trench A</td>
<td>11/21</td>
<td>1:30</td>
<td>4/18.1 127</td>
</tr>
<tr>
<td>11</td>
<td>Welding</td>
<td>11/21</td>
<td>1:45</td>
<td>4/18.1 118</td>
</tr>
<tr>
<td>9</td>
<td>Welding</td>
<td>11/21</td>
<td>2:00</td>
<td>4/18.1 302</td>
</tr>
</tbody>
</table>

RELINQUISHED BY:

RECEIVED BY:

DATE: 11/26 **TIME:** 12:00

METHOD OF SHIPMENT:
TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGATABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

*** REFERENCES

2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES. EPA 600/4-79-200. REVISED MARCH 1983.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11110

REferred BY:

DJP ASSOCIATES LTD.
609 WEST JOHSON AVE
CHESHiRE, CT 06410

FINAL REPORT

*** METHOD SUMMARIES

TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY
FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING
BIORAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON
AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE
VEGETABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND
100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE
NECESSARY DETECTION LIMITS.

*** REFERENCES

1. TEST METHODS FOR EVALUATING SOLID WASTE:PHYSICAL/
2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES.
 EPA 600/4-79-200. REVISED MARCH 1983.
3. STANDARD METHODS FOR EXAMINATION OF WATER AND

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11118

REFERRED BY:
DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

REPORT:
FINAL REPORT

TESTS RESULTS UNITS DETECTION LIMIT METHOD

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR)
DETECTION LIMIT AS INDICATED

SOIL 71 MG/KG 2.00 418.1

*** THIS IS A FINAL REPORT. ***
GILBERT & BENNET (#2)
TANK REMOVAL RECHECK
Pan 1/2

COLLECTED RECEIVED REPORTED
11/21/90 11/27/90 11/30/90 13:15

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR) 49 MG/KG 2.00 418.1
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11110

REFERRED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR) 127 MG/KG 2.00 418.1
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
REPORT: FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR) DETECTION LIMIT 10X THE LIMIT INDICATED.

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOIL</td>
<td>413</td>
<td>MG/KG</td>
<td>2.00</td>
<td>419.1</td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6624
N.Y. ELAP No. 11118

REFERENCES:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

REPORT:

FINAL REPORT

METHOD:

GENERAL INFORMATION
COLLECTOR: DJP

ORGANIC TESTING
SOIL
FET HYDROCARBON (IR)
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
CHAIN OF CUSTODY RECORD

CLIENT NAME: Gil Dent & Bennett

PROJECT: Tank 9 Removal

SAMPLERS SIGNATURE: B. R. B.

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ'D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank 9</td>
<td>1/1</td>
<td>9:00am</td>
<td></td>
</tr>
<tr>
<td></td>
<td>#1 Pan 12 Building</td>
<td></td>
<td></td>
<td>4181 VOC 0240</td>
</tr>
<tr>
<td>2</td>
<td>Welding Room</td>
<td>1/1</td>
<td>9:00a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trench outside.</td>
<td></td>
<td></td>
<td>TCP, PCB</td>
</tr>
<tr>
<td></td>
<td>few conversations with Rod. MH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RELINQUISHED BY: B. R. B.
 DATE: 1/1/90 TIME: 9:30 am

RECEIVED BY: John X. Y.
 DATE: 1/1/90 TIME: 9:30 am

METHOD OF SHIPMENT:
FINAL REPORT

SOIL

*** VOA SURROGATE STUDIES ***

SAMPLE ID: 03058540

1,2-DICHLOROETHANE-D 107. % REC.

TOULENE-D 75. % REC.

BROMOFUROBENZENE 101. % REC.

*** PEST/PCB SURROGATE STUDIES ***

SAMPLE ID: 03058541

DIBUTYLCHLORENDATE 71. % REC. 0.0 8080

*** METHOD SUMMARIES ***

VOLATILE ORGANIC ANALYSIS IS PERFORMED USING H/P 5995 OR 5970 GC/MS, TECKMAR PURGE AND TRAP AND ALS AUTOSAMPLER. CHROMATOGRAPHY INCORPORATES PACKED AND MEGABORE COLUMNS. DATA REDUCTION IS PERFORMED ON RTE 1000 AND CHEMSTATION SYSTEMS. TUNING IS BASED ON BPB STANDARDS. PROCEDURAL GUIDELINES FOLLOW EPA 624 OR SW846 FOR ALL ANALYSIS. AROMATIC VOLATILES LISTED IN VOA 8020 ARE ANALYZED USING GC/MS SYSTEMS.

PEST/PCB ANALYSIS IS PERFORMED ACCORDING TO EPA SW846 PROTOCOL. EQUIPMENT INCLUDES H/P 5890 GC WITH ECD AND AUTOSAMPLER. DATA REDUCTION IS PERFORMED WITH H/P RTE 100 COMPUTER SYSTEMS.

TOTAL PETROLEUM HYDROCARbons are performed by FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD PTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGATABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

*** REFERENCES ***

2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES. EPA 600/4-79-200. REVISED MARCH 1983.

*** THIS IS A FINAL REPORT. ***

DATABASE INFORMATION

WCLID: 03058542
ACCOUNT: 001204
CODE: T10
PAGES: 1

SAMPLE IDENTIFICATION INFORMATION

DJP ASSOC. (QC-REPORT)

COLLECTED: / / 11/01/90
RECEIVED: 11/13/90
REPORTED: 00:00

WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
M.T. ELAP No. 11118
REPORT:

FINAL REPORT

*** GENERAL INFORMATION

COLLECTOR: DJP ASSOC.

*** VOLATILE ORGANICS **SOIL**

DETECTION LIMIT AS INDICATED.

<table>
<thead>
<tr>
<th></th>
<th>ANALYSIS DATE</th>
<th>CONCENTRATION</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>8240</td>
<td>11/12/90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROPROpane</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,22TETRACHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>XYLENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>UG/KG</td>
<td>500.</td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

GILBERT & BENNETT #2
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>*** PCBs (SOIL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB EXTRATION DATE:</td>
<td>11/7/90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB ANALYSIS DATE:</td>
<td>11/12/90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>DETECTION LIMIT AS INDICATED.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** ORGANIC TESTING	SOIL			
PET HYDROCARBON (IR)	[374, 674]	MG/KG	2.00	418.1
DETECTION LIMIT	SEE NOTE	MG/KG		
DETECTION LIMIT IS 1,000X THE LIMIT INDICATED				

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

GENERAL INFORMATION

COLLECTOR: DJP ASSOC.

VOLATILE ORGANICS

SOIL

8240 ANALYSIS DATE: 11/12/90

DETECTION LIMIT AS INDICATED:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Units</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,1-TRICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPAINE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,2-TRICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRANS13DICHLOROPROPENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1122TETRACHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TETRACHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>XYLENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>1,000</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>500.</td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND</td>
<td>1,000</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11116

REFERRED BY:
DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET HYDROCARBON (IR) (113)</td>
<td>MG/KG</td>
<td>PPM</td>
<td>2.00</td>
<td>418.1</td>
</tr>
</tbody>
</table>

DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

*** GENERAL INFORMATION

COLLECTOR: DJP

*** VOLATILE ORGANICS SOIL

DETECTION LIMIT AS INDICATED.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Analysis Date</th>
<th>Units</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>1/10/91</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPAINE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>BENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOFROM</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1122TETRACLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>TOLUENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>XYLENE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>MEK</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>MIBK</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
<tr>
<td>ACETONE</td>
<td></td>
<td>UG/KG</td>
<td>8240</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

GILBERT&BENNETT (TP2)
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td>ND</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MTBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td></td>
<td>2.00</td>
<td>418.1</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td>1,978</td>
<td>MG/KG</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***
Chain of Custody Record

Client Name: Gilbert & Beach

Project: Tank Removal

Samplers Signature: [Signature]

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Sample Location</th>
<th>Date</th>
<th>Time</th>
<th>Analysis Req.</th>
</tr>
</thead>
</table>
| 5 | Sample E | 11/14/90 | 2:00 | PCB
| 6 | Tank #6 | 11/15/90 | 10:00 | 418.1, 3240, EP tox |
| 7 | Sample F | 11/16/90 | 10:25 | EP tox, 5240 |

Relinquished by: [Signature]
Date: 11/14/90
Time:

Received by: [Signature]
Date: 11/15/90
Time: 12:45

Method of Shipment:
Final Report

QC Recovery Studies

<table>
<thead>
<tr>
<th>Substance</th>
<th>ID Number</th>
<th>Results</th>
<th>Units</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>03169314</td>
<td>Recovery</td>
<td>98%</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>03169313</td>
<td>Recovery</td>
<td>84%</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>03169314</td>
<td>Recovery</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>03169313</td>
<td>Recovery</td>
<td>114%</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>03169313</td>
<td>Recovery</td>
<td>110%</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>03169314</td>
<td>Recovery</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>03169314</td>
<td>Recovery</td>
<td>96%</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>03169313</td>
<td>Recovery</td>
<td>80%</td>
<td></td>
</tr>
</tbody>
</table>

QC Duplicate Studies

<table>
<thead>
<tr>
<th>Substance</th>
<th>ID Number</th>
<th>Results</th>
<th>Units</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>03169313</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>03169314</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Cadmium</td>
<td>03169314</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>03169314</td>
<td>Variance</td>
<td>17%</td>
<td></td>
</tr>
<tr>
<td>Lead</td>
<td>03169314</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Mercury</td>
<td>03169313</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Selenium</td>
<td>03169313</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Silver</td>
<td>03169314</td>
<td>Variance</td>
<td>0%</td>
<td></td>
</tr>
</tbody>
</table>

Method Summaries

Metal analysis is performed on digested extracts using atomic absorption or ICP spectroscopy. AA samples are atomized using FASTAC auto deposition systems and automatically deposited into graphite cells or directly into flame. ICP samples are automatically sampled, nebulized and transported into the plasma torch. Final results are produced by auto data/reduction and graphics printer.

EPT extractions are performed by SW846 protocol. Samples are processed for 24 hrs using auto rotators from associated design & manufacturing Co. Extracted samples are then filtered and inorganic species are identified and quantified using approved methods of analysis.

References

REferred by:

DJP ASSOCIATES LTD.
609 WEST JOHSON AVE

CHESHIRE, CT 06410

FINAL REPORT

EPA 600/4-79-200. REVISED MARCH 1983.

THIS IS A FINAL REPORT.
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11119

REferred BY:

DJF ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESFiRE, CT 06410

FinaL REPORT

[

*** VOA SURROGATE STUDIES
SAMPLE ID: 03169309
1,2-DICHLOROETHANE-D 105. % REC.
TOLUENE-D 86. % REC.
BROMOFUROBERENENE 94. % REC.

*** PEST/PCB SURROGATE STUDIES
SAMPLE ID: 03169309
DIBUTYLCLORENDATE 83 % REC. 0.0 8080

*** METHOD SUMMARIES
VOLATILE ORGANIC ANALYSIS IS PERFORMED USING H/P 5995 OR 5970 GC/MS, TECKMAR PURGE AND TRAP AND ALS AUTOSAMPLER. CHROMATOGRAPHY INCORPORATES PACKED AND MEGABORE COLUMNS. DATA REDUCTION IS PERFORMED ON RTE 1000 AND CHEMSTATION SYSTEMS. TUNING IS BASED ON BBF STANDARDS. PROCEDURAL GUIDELINES FOLLOW EPA 624 OR SW846 FOR ALL ANALYSIS. AROMATIC VOLATILES LISTED IN VOA 8020 ARE ANALYZED USING GC/MS SYSTEMS.

PEST/PCB ANALYSIS IS PERFORMED ACCORDING TO EPA SW846 PROTOCOL. EQUIPMENT INCLUDES H/P 5890 GC WITH ECD AND AUTOSAMPLER. DATA REDUCTION IS PERFORMED WITH H/P RTE 100 COMPUTER SYSTEMS.

TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGETABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

*** REFERENCES
2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES.
EPA 600/4-79-200. REVISED MARCH 1983.

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

III. GENERAL INFORMATION

COLLECTOR: DJP ASSOCIATES LTD.

SITE: 609 WEST JOHSON AVE

LOCATION: CHESIRE, CT 06410

III. VOLATILE ORGANICS

SOIL

ANALYSIS DATE: 11/16/90

DETECTION LIMIT AS INDICATED:

<table>
<thead>
<tr>
<th>Substance</th>
<th>ND</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOFOROM</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1122TETRAChLOROETHANE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TETRAChLOROETHENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TOLUENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>XYLENE</td>
<td></td>
<td>UG/KG</td>
<td>1,000.</td>
<td>8240</td>
</tr>
<tr>
<td>MEK</td>
<td></td>
<td>UG/KG</td>
<td>1,000.</td>
<td>8240</td>
</tr>
<tr>
<td>MIBK</td>
<td></td>
<td>UG/KG</td>
<td>500.</td>
<td>8240</td>
</tr>
<tr>
<td>ACETONE</td>
<td></td>
<td>UG/KG</td>
<td>1,000.</td>
<td>8240</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE
Final Report

<table>
<thead>
<tr>
<th>Tests</th>
<th>Results</th>
<th>Units</th>
<th>Detection Limit</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>PCBs (SOIL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PCB-1016</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1221</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1232</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1242</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1248</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1254</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
<tr>
<td>PCB-1260</td>
<td>ND</td>
<td>UG/KG</td>
<td>250.</td>
<td>8080</td>
</tr>
</tbody>
</table>

Detection limit as indicated.

Organic Testing

| PET Hydrocarbon (IR) | 378 | MG/KG | 2.00 | 418.1 |

Detection limit 10X the limit indicated.

This is a final report.
General Information

Collector: DJP ASSOCIATES LTD.
Address: 609 WEST JOHNSON AVE
City: CHESHIRE, CT 06410

Volatile Organics

Sample: SOIL
Analysis Date: 11/16/90
Detection Limit: As indicated

<table>
<thead>
<tr>
<th>Compound</th>
<th>ND</th>
<th>ug/kg</th>
<th>50</th>
<th>8240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloromethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Bromomethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Chloroethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Methylene Chloride</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Trichlorofluoro-CH4</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-Dichloroethene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-Dichloroethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-Dichloroethene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Chloroform</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,1-Trichloroethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Bromodichloromethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-Dichloropropane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>CIS13Dichloropropene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Trichloroethene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Benzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Dibromochloromethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,2-Trichloroethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Trans13Dichloropropene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Bromoform</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1122Tetrachloroethane</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Tetrachloroethene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Toluene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Chlorobenzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Ethyl Benzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>1,4-Dichlorobenzene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>Xylene</td>
<td></td>
<td></td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>MEK</td>
<td></td>
<td></td>
<td>1,000</td>
<td>8240</td>
</tr>
<tr>
<td>MIBK</td>
<td></td>
<td></td>
<td>500</td>
<td>8240</td>
</tr>
<tr>
<td>Acetone</td>
<td></td>
<td></td>
<td>1,000</td>
<td>8240</td>
</tr>
</tbody>
</table>

Conclusion

Continued on next page.
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td>MG/KG</td>
<td>2.00</td>
<td>418.1</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td>(41)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THIS IS A FINAL REPORT.

TANK REMOVAL (#6 TNK6)

GILBERT & BENNETT

Building

COLECTED

11/09/90

RECEIVED

11/12/90

REPORTED

11/19/90 10:00

CHESHIRE, CT 06410

DJP ASSOCIATES LTD.

609 WEST JOHSON AVE
FINAL REPORT

TESTS

<table>
<thead>
<tr>
<th>WATER</th>
<th>RESULTS</th>
<th>UNIT</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSENIC</td>
<td><0.005</td>
<td>MG/L</td>
<td>0.005</td>
<td>206.3</td>
</tr>
<tr>
<td>BARIUM</td>
<td>0.56</td>
<td>MG/L</td>
<td>0.01</td>
<td>200.7</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>0.016</td>
<td>MG/L</td>
<td>0.001</td>
<td>303.0</td>
</tr>
<tr>
<td>CHROMIUM, TOTAL</td>
<td><0.001</td>
<td>MG/L</td>
<td>0.001</td>
<td>218.2</td>
</tr>
<tr>
<td>LEAD</td>
<td>0.011</td>
<td>MG/L</td>
<td>0.001</td>
<td>239.2</td>
</tr>
<tr>
<td>MERCURY</td>
<td><0.001</td>
<td>MG/L</td>
<td>0.001</td>
<td>245.1</td>
</tr>
<tr>
<td>SELENIUM</td>
<td><0.005</td>
<td>MG/L</td>
<td>0.005</td>
<td>270.3</td>
</tr>
<tr>
<td>SILVER</td>
<td><0.001</td>
<td>MG/L</td>
<td>0.001</td>
<td>272.2</td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***

REPORT:

- **WATER CONTROL LABORATORIES**
- **A DIVISION OF MATRIX ANALYTICAL INC.**
- **HOPKINTON INDUSTRIAL PARK**
- **106 SOUTH ST.**
- **HOPKINTON, MA 01748**
- **508-435-6824**
- **Mass. Cert. No. 313 * Conn. Cert. No. PH-0515 * EPA ID No. MA009**
- **N.Y. ELAP No. 11118**

REFERRED BY:

- DJP ASSOCIATES LTD.
- 609 WEST JOHNSON AVE
- CHESHIRE, CT 06410

SAMPLE IDENTIFICATION INFORMATION

- **TANK REMOVAL (#6 TNK6)**
- **GILBERT & BENNETT**

COLLECTED	**RECEIVED**	**REPORTED**
11/09/90 | 11/12/90 | 11/19/90
10:00 |
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
NY ELAP No. 11116

REFERRED BY:
DJF ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
<td></td>
</tr>
</tbody>
</table>

SAMPLE IDENTIFICATION INFORMATION

TANK REMOVAL (#7 SMPF)
GILBERT & BENNETT

Clarifies water

COLLECTED	RECEIVED	REPORTED
11/09/90 | 11/12/90 | 11/19/90 |
10:00 | | |

FINAL REPORT

GENERAL INFORMATION

COLLECTOR: DJF ASSOC.

VOLATILE ORGANICS

SOIL

8240 ANALYSIS DATE: 11/16/90

DETECTION LIMIT AS INDICATED:

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>TRICHLOROFUORO-CH4</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPAINE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1122TETRAICHLOROETHANE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>XYLENE</td>
<td>ND UG/KG 50. 8240</td>
</tr>
<tr>
<td>MEK</td>
<td>ND UG/KG 1,000. 8240</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND UG/KG 500. 8240</td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND UG/KG 1,000. 8240</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

TANK REMOVAL (#7 SMPF)
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UC/kg</td>
<td>50.</td>
<td>8240</td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
General Information

Collector: DJP ASSOC.

Sample Preparation

- EPT Extraction: 11/12/90
- Digestion-Metals: 11/14/90
- Digestion-Hydrides: 11/14/90
- Digestion-Mercury: 11/14/90

Trace Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Value (mg/L)</th>
<th>Detection Limit (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Barium</td>
<td>0.03</td>
<td>0.01</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td>0.027</td>
<td>0.001</td>
</tr>
<tr>
<td>Lead</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Selenium</td>
<td><0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>Silver</td>
<td><0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*** This is a Final Report. ***
DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE.
CHESHIRE, CT 06410

CHAIN OF CUSTODY RECORD

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>TP-1</td>
<td>per map</td>
<td>1/8</td>
<td>9 AM</td>
<td>8:240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP-2</td>
<td>per map</td>
<td>1/8</td>
<td>2 PM</td>
<td>8:240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TP-3</td>
<td>per map</td>
<td>1/8</td>
<td>2 PM</td>
<td>8:240</td>
</tr>
</tbody>
</table>

RELINQUISHED BY:

DATE: 1-1-47 **TIME:** 2:30

RECEIVED BY:

DATE: 1-1 **TIME:** 2:30

METHOD OF SHIPMENT: WATER CONTROL LABS
Matrix Analytical, Inc.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** VOLATILE ORGANICS

DETECTION LIMIT AS INDICATED.

8240 ANALYSIS DATE: 1/10/91
CHLOROMETHANE ND UG/KG 50. 8240
BROMOMETHANE ND UG/KG 50. 8240
VINYL CHLORIDE ND UG/KG 50. 8240
CHLOROETHANE ND UG/KG 50. 8240
METHYLENE CHLORIDE ND UG/KG 50. 8240
TRICHLOROFLUOROCHLOROETHANE ND UG/KG 50. 8240
1,1-DICHLOOROETHENE ND UG/KG 50. 8240
1,1-DICHLOROETHANE ND UG/KG 50. 8240
1,2-DICHLOROETHENE ND UG/KG 50. 8240
CHLOROFORM ND UG/KG 50. 8240
1,2-DICHLOROETHANE ND UG/KG 50. 8240
1,1,1TRICHLOROETHANE ND UG/KG 50. 8240
CARBON TETRACHLORIDE ND UG/KG 50. 8240
BROMODICHLOROMETHANE ND UG/KG 50. 8240
1,2-DICHLOROPROPAINE ND UG/KG 50. 8240
CIS13DICHLOROPROPEN ND UG/KG 50. 8240
TRICHLOROETHENE ND UG/KG 50. 8240
BENZENE ND UG/KG 50. 8240
DIBROMOCHLOROMETHANE ND UG/KG 50. 8240
1,1,2TRICHLOROETHANE ND UG/KG 50. 8240
TRAN13DICHLOROPROPEN ND UG/KG 50. 8240
BROMOFORM ND UG/KG 50. 8240
1122TETRACHLOROETHANE ND UG/KG 50. 8240
TETRACHLOROETHENE ND UG/KG 50. 8240
TOLUENE ND UG/KG 50. 8240
CHLOROBENZENE ND UG/KG 50. 8240
ETHYL BENZENE ND UG/KG 50. 8240
1,3-DICHLOROBENZENE ND UG/KG 50. 8240
1,2-DICHLOROBENZENE ND UG/KG 50. 8240
1,4-DICHLOROBENZENE ND UG/KG 50. 8240
XYLENE ND UG/KG 50. 8240
MEK ND UG/KG 1,000. 8240
MIRK ND UG/KG 500. 8240
ACETONE ND UG/KG 1,000. 8240

CONTINUED ON NEXT PAGE
<table>
<thead>
<tr>
<th>TEST</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td>131</td>
<td>MG/KG</td>
<td>2.00</td>
<td>418.1</td>
</tr>
</tbody>
</table>

DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
CHAIN OF CUSTODY RECORD

CLIENT NAME: Gilheat & Bennohl

PROJECT: Tank 4

SAMPLER'S SIGNATURE:

<table>
<thead>
<tr>
<th>SAMPLE #</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQUIRED</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tank 41</td>
<td>1/3</td>
<td>1:30</td>
<td>8.240, 418.1 855 EPTox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Tank 6</td>
<td>1/7</td>
<td>4:30</td>
<td>8.240, 418.1 797 EPTox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Tank 2</td>
<td>1/7</td>
<td>6:00</td>
<td>8.240, 418.1 855 EPTox</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-1</td>
<td>Tank 6</td>
<td>1/7</td>
<td>4:30</td>
<td>8.240, 418.1 1385 EPTox</td>
</tr>
</tbody>
</table>

RELINQUISTED BY:

DATE: 11/8 **TIME:** 2:30

RECEIVED BY:

DATE: 11/8 **TIME:** 2:00

RELINQUISTED BY:

DATE: **TIME:**

RECEIVED BY:

DATE: **TIME:**

METHOD OF SHIPMENT:

DJP ASSOCIATES LTD.

609 WEST JOHNSON AVE.

CHESHIRE, CT 06410
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824

REFFERED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE

CHESHIRE, CT 06410

REPORT:

FINAL REPORT

COMMENT:

SOIL

*** VOA SURROGATE STUDIES
SAMPLE ID: 03139039
1,2-DICHLOROETHANE-D 93. % REC.
TOULENE-D 74. % REC.
BROMOFURODBENZENE 84. % REC.

*** PEST/PCB SURROGATE STUDIES
SAMPLE ID: 03139039
DIBUTYLCICHLOREDDATE 91 % REC. 0.0

*** METHOD SUMMARIES

VOLATILE ORGANIC ANALYSIS IS PERFORMED USING H/P
5095 OR 5970 GC/MS, TECKMAR PURGE AND TRAP AND ALS
AUTOSAMPLER. CHROMATOGRAPHY INCORPORSATES PACKED AND
MEGABORE COLUMNS. DATA REDUCTION IS PERFORMED ON RTE
1000 AND CHEMSTATION SYSTEMS. TUNING IS BASED ON BFB
STANDARDS. PROCEDURAL GUIDELINES FOLLOW EPA 624 OR
SW846 FOR ALL ANALYSIS. AROMATIC VOLATILES LISTED
IN VOA 8020 ARE ANALYZED USING GC/MS SYSTEMS.
PES/P/PCB ANALYSIS IS PERFORMED ACCORDING TO EPA
SW846 PROTOCOL. EQUIPMENT INCLUDES H/P 5890 GC WITH
ECD AND AUTOSAMPLER. DATA REDUCTION IS PERFORMED WITH
H/P RTE 100 COMPUTER SYSTEMS.

TOTAL PETROLEUM HYDROCARBONRS ARE PERFORMED BY
FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING
BIDRAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON
AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE
VEGETABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND
100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE
NECESSARY DETECTION LIMITS.

*** REFERENCES
1. TEST METHODS FOR EVALUATING SOLID WASTE: PHYSICAL/
2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES.
EPA 600/4-79-200. REVISED MARCH 1983.
3. STANDARD METHODS FOR EXAMINATION OF WATER AND

*** THIS IS A FINAL REPORT. ***
QC RECOVERY STUDIES

<table>
<thead>
<tr>
<th>Element</th>
<th>ID</th>
<th>Recovery (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>03139046</td>
<td>104.9</td>
</tr>
<tr>
<td>Barium</td>
<td>03139047</td>
<td>89.4</td>
</tr>
<tr>
<td>Cadmium</td>
<td>03139048</td>
<td>100.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>03139049</td>
<td>100.0</td>
</tr>
<tr>
<td>Lead</td>
<td>03139050</td>
<td>110.1</td>
</tr>
<tr>
<td>Mercury</td>
<td>03139051</td>
<td>80.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>03139052</td>
<td>98.0</td>
</tr>
<tr>
<td>Silver</td>
<td>03139053</td>
<td>100.0</td>
</tr>
</tbody>
</table>

QC DUPLICATE STUDIES

<table>
<thead>
<tr>
<th>Element</th>
<th>ID</th>
<th>Variance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>03139047</td>
<td>0.0</td>
</tr>
<tr>
<td>Barium</td>
<td>03139048</td>
<td>18.3</td>
</tr>
<tr>
<td>Cadmium</td>
<td>03139049</td>
<td>0.0</td>
</tr>
<tr>
<td>Chromium</td>
<td>03139050</td>
<td>0.0</td>
</tr>
<tr>
<td>Lead</td>
<td>03139051</td>
<td>0.0</td>
</tr>
<tr>
<td>Mercury</td>
<td>03139052</td>
<td>0.0</td>
</tr>
<tr>
<td>Selenium</td>
<td>03139053</td>
<td>0.0</td>
</tr>
<tr>
<td>Silver</td>
<td>03139054</td>
<td>0.0</td>
</tr>
</tbody>
</table>

METHOD SUMMARIES

Metal analysis is performed on digested extracts using atomic absorption or ICP spectroscopy. AA samples are atomized using fastac auto deposition systems and automatically deposited into graphite cells or directly into flame. ICP samples are automatically sampled, nebulized and transported into the plasma torch. Final results are produced by auto data/reduction and graphics printer.

EPT extractions are performed by SW846 protocol. Samples are processed for 24 hrs using auto rotators from associated design & manufacturing co. Extracted samples are then filtered and inorganic species are identified and quantified using approved methods of analysis.

REFERENCES

Continued on next page
EPA 600/4-79-200. REVISED MARCH 1983.
*** THIS IS A FINAL REPORT. ***
General Information

Collector: DJP ASSOC.

Volatile Organics

SOIL

Analysis Date: 11/18/90

Detection Limit as Indicated:

<table>
<thead>
<tr>
<th>Compound</th>
<th>Concentration</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPAINE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TRANS3DICHLOROPROPEN</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1122TETRACHLOROETHANE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>50.</td>
</tr>
<tr>
<td>XYLENE</td>
<td>ND</td>
<td>1,000.</td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>500.</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>1,000.</td>
</tr>
</tbody>
</table>

Continued on next page
REPORT

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td>ND</td>
<td>50.</td>
<td>8240.</td>
</tr>
<tr>
<td>MTBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td>485</td>
<td>2.00</td>
<td>418.1</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***

SAMPLE IDENTIFICATION INFORMATION

TANK4 (#2 TANK6)

GILBERT & BENNETT

COLLECTED | **RECEIVED** | **REPORTED**

11/07/90 | 11/09/90 | 11/26/90

16:30
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
108 SOUTH ST.
HOPKINTON, MA 01743
508-435-6824

REferred by:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

Final Report

General Information

Collector: DJP ASSOC.

Sample Preparation

<table>
<thead>
<tr>
<th>Test</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPT Extraction</td>
<td>11/9/90</td>
</tr>
<tr>
<td>Digestion-Metals</td>
<td>11/12/90</td>
</tr>
<tr>
<td>Digestion-Hydrides</td>
<td>11/12/90</td>
</tr>
<tr>
<td>Digestion-Mercury</td>
<td>11/14/90</td>
</tr>
</tbody>
</table>

Trace Metals

<table>
<thead>
<tr>
<th>Metal</th>
<th>Results</th>
<th>Detection Limit</th>
<th>Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td><0.005 MG/L</td>
<td>0.005</td>
<td>206.3</td>
</tr>
<tr>
<td>Barium</td>
<td>0.05 MG/L</td>
<td>0.01</td>
<td>200.7</td>
</tr>
<tr>
<td>Cadmium</td>
<td><0.001 MG/L</td>
<td>0.001</td>
<td>303A</td>
</tr>
<tr>
<td>Chromium, Total</td>
<td><0.001 MG/L</td>
<td>0.001</td>
<td>218.2</td>
</tr>
<tr>
<td>Lead</td>
<td><0.001 MG/L</td>
<td>0.001</td>
<td>239.2</td>
</tr>
<tr>
<td>Mercury</td>
<td><0.001 MG/L</td>
<td>0.001</td>
<td>245.1</td>
</tr>
<tr>
<td>Selenium</td>
<td><0.005 MG/L</td>
<td>0.005</td>
<td>270.3</td>
</tr>
<tr>
<td>Silver</td>
<td><0.001 MG/L</td>
<td>0.001</td>
<td>272.2</td>
</tr>
</tbody>
</table>

This is a Final Report.
Sample Identification Information

TANK4 (TANK4)

GILBERT & BENNETT

RECEIVED

11/09/90

REPORTED

11/20/90

13:30

Final Report

General Information

Collector: DJP ASSOCIATES LTD.

609 WEST JOHSON AVE

CHESHIRE, CT 06410

Sample Preparation

EPT EXTRATION

11/9/90

DIGESTION-METALS

11/12/90

DIGESTION-HYDRIDES

11/12/90

DIGESTION-MERCURY

11/14/90

Trace Metals

<table>
<thead>
<tr>
<th>Element</th>
<th>Water</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARSENIC</td>
<td><0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>BARIUM</td>
<td>0.63</td>
<td>0.01</td>
</tr>
<tr>
<td>CADMIUM</td>
<td>0.040</td>
<td>0.001</td>
</tr>
<tr>
<td>CHROMIUM, TOTAL</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>LEAD</td>
<td>0.061</td>
<td>0.001</td>
</tr>
<tr>
<td>MERCURY</td>
<td><0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>SELENIUM</td>
<td><0.005</td>
<td>0.005</td>
</tr>
<tr>
<td>SILVER</td>
<td><0.001</td>
<td>0.001</td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
*** General Information

Collector: DJP ASSOC.

Volatile Organics

<table>
<thead>
<tr>
<th>Substance</th>
<th>Units</th>
<th>Limit</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,1,1TRICHLOROETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1122TETRACHLOROETHENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>XYLENE</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MEK</td>
<td>UG/KG</td>
<td>1,000.</td>
<td>8240</td>
</tr>
<tr>
<td>MBK</td>
<td>UG/KG</td>
<td>500.</td>
<td>8240</td>
</tr>
<tr>
<td>ACETONE</td>
<td>UG/KG</td>
<td>1,000.</td>
<td>8240</td>
</tr>
</tbody>
</table>

Continued on next page...
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. DRE No. 11116

REferred BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

REPORT:

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td>ND</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MTBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td>[130] MB/KG</td>
<td>2.00</td>
<td>418.1</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824

REferred by:
DJF ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJF ASSOC.

*** SAMPLE PREPARATION
EPT EXTRACTION 11/9/90
DIGESTION-METALS 11/12/90
DIGESTION-HYDRIDES 11/12/90
DIGESTION-MERCURY 11/14/90

*** TRACE METALS WATER
ARSENIC <0.005 MG/L 0.005 206.3
BARIUM 0.27 MG/L 0.01 200.7
CADMIUM <0.001 MG/L 0.001 303
CHROMIUM, TOTAL 0.003 MG/L 0.001 218.2
LEAD 0.008 MG/L 0.001 239.2
MERCURY <0.001 MG/L 0.001 245.1
SELENIUM <0.005 MG/L 0.005 270.3
SILVER <0.001 MG/L 0.001 272.2

*** THIS IS A FINAL REPORT. ***
DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE.
CHESHIRE, CT 06410

CHAIN OF CUSTODY RECORD

<table>
<thead>
<tr>
<th>CLIENT NAME:</th>
<th>Gilbert & Bennett</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT:</td>
<td>Tank Removal</td>
</tr>
<tr>
<td>SAMPLERS SIGNATURE:</td>
<td>B. R. I.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sample A</td>
<td>1/7/90</td>
<td>11:00</td>
<td>418.1</td>
</tr>
<tr>
<td>2</td>
<td>Sample B</td>
<td>1/7/90</td>
<td>11:15</td>
<td>418.6</td>
</tr>
<tr>
<td>3</td>
<td>Sample C</td>
<td>1/7/90</td>
<td>1:45</td>
<td>418.1</td>
</tr>
<tr>
<td>4</td>
<td>Sample D</td>
<td>1/7/90</td>
<td>2:00</td>
<td>418.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELINQUISHED BY:</th>
<th>DATE: 1/7/90</th>
<th>TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVED BY:</td>
<td>1/7/90</td>
<td>12:26</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RELINQUISHED BY:</th>
<th>DATE:</th>
<th>TIME:</th>
</tr>
</thead>
<tbody>
<tr>
<td>RECEIVED BY:</td>
<td>DATE:</td>
<td>TIME:</td>
</tr>
</tbody>
</table>

METHOD OF SHIPMENT: ________________________________
PROJECT: Warehouse outside

TANK Locations

Cheshire, Connecticut
(203) 272-4811
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11118

REferred BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP ASSOC.

*** ORGANIC TESTING
PET HYDROCARBON (IR) 1,100 MG/KG
DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP ASSOC.

*** ORGANIC TESTING
PET HYDROCARBON (IR) 1,380 MG/KG
DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***
REPORT:

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJF ASSOC.

*** ORGANIC TESTING
PET HYDROCARBON (IR) 4,086 MG/KG 2.00 418.1
DETECTION LIMIT 10X THE LIMIT INDICATED.
*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11118

REFFERED BY:

DJP ASSOCIATES LTD.
609 WEST JOHSON AVE
CHESHIRE, CT 06410

REPORT: FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP ASSOC.

*** ORGANIC TESTING
PET HYDROCARBON (IR) 49 MG/KG
DETECTION LIMIT AS INDICATED

*** THIS IS A FINAL REPORT. ***
CHAIN OF CUSTODY RECORD

CLIENT NAME: Gilbert + Brent

PROJECT: Tank Removal Recheck

SAMPLES SIGNATURE:

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ'</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Tank 2</td>
<td>1/21</td>
<td>12:00</td>
<td>4/13.1</td>
</tr>
<tr>
<td>3</td>
<td>Ware A</td>
<td>1/21</td>
<td>2:50</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Ware B</td>
<td>1/21</td>
<td>2:50</td>
<td>4/15.1</td>
</tr>
<tr>
<td>8</td>
<td>Ware C</td>
<td>1/21</td>
<td>2:50</td>
<td></td>
</tr>
</tbody>
</table>

RELINQUISHED BY: [Signature]
DATE: 1/26/90 **TIME:** 12:00

RECEIVED BY: [Signature]
DATE: 1/27 **TIME:** 12:40

RELINQUISHED BY:
DATE:
TIME:

RECEIVED BY:
DATE:
TIME:

METHOD OF SHIPMENT:
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
MABC Cert. No. 313 * Conn. Cert. No. PH-0518 * EPA ID No. MA008
N.Y. ELAP No. 11118

REFFERED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE

CHESHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION

COLLECTOR: DJP ASSOC.

*** ORGANIC TESTING

PET HYDROCARBON (IR) 2,474 MG/KG
DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
Mass. Cert No. 313 * Conn. Cert No. PH-0515 * EPC ID No. Ma008
N.Y. ELAP No. 121118

REFERRED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

REPORT:

FINAL REPORT

WCL ID # 03310113
ACCOUNT # 001204
CODE # T10
PAGE # 1

SAMPLE IDENTIFICATION INFORMATION
GILBERT & BENNETT (#6)
TANK REMOVAL RECHECK
Spot A.

COLLECTED 11/21/90
RECEIVED 11/27/90
REPORTED 12/03/90
14:50

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
SOIL
PET HYDROCARBON (IR) 151 MG/KG
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11118

REFERRED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CHESHIRE, CT 06410

REPORT:
FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** ORGANIC TESTING
PET HYDROCARBON (IR) 21
DETECTION LIMIT AS INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.H. ELAP No. 1114

REFERED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE

CHESHIRE, CT 06410

REPORT:

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP ASSOC.

*** ORGANIC TESTING
PET HYDROCARBON (IR) 1.6 MG/KG
DETECTION LIMIT AS INDICATED

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>MG/KG</td>
<td>2.00</td>
<td></td>
<td>418.1</td>
<td></td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP

*** VOLATILE ORGANICS

SOIL DETECTION LIMIT AS INDICATED.

8240 ANALYSIS DATE: 1/11/91

<table>
<thead>
<tr>
<th>Compound</th>
<th>ND</th>
<th>UG/KG</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROBUTANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,1-TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BENZENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,1,2-TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1122TETRACLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TETRACLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>TOLUENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>XYLENE</td>
<td></td>
<td>UG/KG</td>
<td>50.</td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>UG/KG</td>
<td>500.</td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

GILBERT&BENNELL (TP3)
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50</td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td></td>
<td></td>
<td>8240</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td>2,240</td>
<td>MG/KG</td>
<td>2.00</td>
</tr>
<tr>
<td>DETECTION LIMIT 10X THE LIMIT INDICATED.</td>
<td>418.1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
Matrix Analytical, Inc.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824

REFERED BY:

DJP ASSOCIATES LTD.
609 WEST JOHSON AVE

CHESHIRE, CT 06410

REPORT:

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOA SURROGATE STUDIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE ID:</td>
<td>10090656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE-D</td>
<td>106.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOLUENE-D</td>
<td>113.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROMOFUOROBENZENE</td>
<td>87.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** VOA MATRIX SPIKE STUDIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE ID:</td>
<td>10090656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>87.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BENZENE</td>
<td>91.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>92.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>98.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOLUENE</td>
<td>92.</td>
<td>% REC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** METHOD SUMMARIES

VOLATILE ORGANIC ANALYSIS IS PERFORMED USING H/P 5995 OR 5970 GC/MS, TECKMAR PURGE AND TRAP AND ALS AUTOSAMPLER. CHROMATOGRAPHY INCORPORATES PACKED AND MEGABORE COLUMNS. DATA REDUCTION IS PERFORMED ON RTE 1000 AND CHEMSTATION SYSTEMS. TUNING IS BASED ON BFB STANDARDS. PROCEDURAL GUIDELINES FOLLOW EPA 624 OR SW846 FOR ALL ANALYSIS. AROMATIC VOLATILES LISTED IN VOA 8020 ARE ANALYZED USING GC/MS SYSTEMS.

TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD PTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGETABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

*** REFERENCES

2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES. EPA 600/4-79-200. REVISED MARCH'1983.

*** THIS IS A FINAL REPORT. ***
SAMPLE IDENTIFICATION INFORMATION

TANK4 (#3 TANK2)
GILBERT & BENNETT
welding office T-42

<table>
<thead>
<tr>
<th>COLLECTED</th>
<th>RECEIVED</th>
<th>REPORTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/07/90</td>
<td>11/09/90</td>
<td>11/21/90</td>
</tr>
<tr>
<td>18:00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

###-final report

<table>
<thead>
<tr>
<th>*** GENERAL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLLECTOR: DJP ASSOC.</td>
</tr>
</tbody>
</table>

*** VOLATILE ORGANICS

| 8240 ANALYSIS DATE: 11/18/90 |
| DETECTION LIMIT AS INDICATED |

<table>
<thead>
<tr>
<th>COMPOUND</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROPROPANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>BROMOFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,122TETRACHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>TOLUENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>XYLENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td></td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
<td></td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>UG/KG</td>
<td>500.</td>
<td></td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000.</td>
<td></td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

TANK4 (#3 TANK2)
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
106 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824
N.Y. ELAP No. 11119

SAMPLE IDENTIFICATION INFORMATION
TANK4 (#3 TANK2)
GILBERT & BENNETT

REPORT:

FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td>PET HYDROCARBON (IR)</td>
<td>792</td>
<td>MG/KG</td>
</tr>
</tbody>
</table>

DETECTION LIMIT 10X THE LIMIT INDICATED.

*** THIS IS A FINAL REPORT. ***
WATER CONTROL LABORATORIES
A DIVISION OF MATRIX ANALYTICAL INC.
HOPKINTON INDUSTRIAL PARK
166 SOUTH ST.
HOPKINTON, MA 01748
508-435-6824

REFERRED BY:

DJP ASSOCIATES LTD.
609 WEST JOHNSON AVE
CCHSHIRE, CT 06410

FINAL REPORT

*** GENERAL INFORMATION
COLLECTOR: DJP ASSOC.

*** SAMPLE PREPARATION
EPT EXTRACTION 11/9/90
DIGESTION-METALS 11/12/90
DIGESTION-HYDRIDES 11/12/90
DIGESTION-MERCURY 11/14/90

*** TRACE METALS WATER
ARSENIC <0.005 MG/L 0.005 206.3
BARIUM 0.34 MG/L 0.01 200.7
CADMIUM <0.001 MG/L 0.001 303A
CHROMIUM, TOTAL 0.060 MG/L 0.001 218.2
LEAD 0.002 MG/L 0.001 239.2
MERCURY <0.001 MG/L 0.001 245.1
SELENIUM <0.005 MG/L 0.005 270.3
SILVER <0.001 MG/L 0.001 272.2

*** THIS IS A FINAL REPORT. ***
CHAIN OF CUSTODY RECORD

CLIENT NAME: Gilbert & Bennett

PROJECT: Gilbert & Bennett

SAMPLERS SIGNATURE: [Signature]

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>SAMPLE LOCATION</th>
<th>DATE</th>
<th>TIME</th>
<th>ANALYSIS REQ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas Tank</td>
<td>Guardhouse</td>
<td>14/11/91</td>
<td>16:15</td>
<td>8240</td>
</tr>
</tbody>
</table>

RELINQUISHED BY: [Signature] DATE: 14/11/91 TIME: 12:00

RECEIVED BY: [Signature] DATE: 14/11/91 TIME: 12:00

METHOD OF SHIPMENT: WATER Control Labs
GENERAL INFORMATION

COLLECTOR: DJP

VOLATILE ORGANICS

SOIL

DETECTION LIMIT AS INDICATED.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Analysis Date</th>
<th>Units</th>
<th>Limit</th>
<th>Detection Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8240 ANALYSIS DATE</td>
<td>1/14/91</td>
<td>UG/KG</td>
<td>50</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>VINYL CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>METHYLENE CHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROFLUORO-CH4</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROFORM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,1TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CARBON TETRACHLORIDE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMODICHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROPROPANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>CIS13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRICHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>DIBROMOCHLOROMETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,1,2TRICHLOROETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TRAN13DICHLOROPROPENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>BROMOFORAM</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1122TETRALCLORETHANE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TETRACHLOROETHENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>TOLUENE</td>
<td>202</td>
<td>UG/KG</td>
<td>5.0.</td>
<td>8240</td>
</tr>
<tr>
<td>CHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>ETHYL BENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,3-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,2-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>1,4-DICHLOROBENZENE</td>
<td>ND</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>XYLENE</td>
<td>-270.</td>
<td>UG/KG</td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MEK</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000</td>
<td>8240</td>
</tr>
<tr>
<td>MIBK</td>
<td>ND</td>
<td>UG/KG</td>
<td>500.</td>
<td>8240</td>
</tr>
<tr>
<td>ACETONE</td>
<td>ND</td>
<td>UG/KG</td>
<td>1,000</td>
<td>8240</td>
</tr>
</tbody>
</table>

CONTINUED ON NEXT PAGE

SAMPLE IDENTIFICATION INFORMATION

GILBERT & BENNETT (TANK)

COLECCED	**RECEIVED**	**REPORTED**
01/11/91 | 01/11/91 | 01/18/91
10:15 | |

METHOD
FINAL REPORT

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>*** VOLATILE ORGANICS</td>
<td>SOIL</td>
<td></td>
<td>50.</td>
<td>8240</td>
</tr>
<tr>
<td>MTBE</td>
<td>ND</td>
<td>UG/KG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>*** ORGANIC TESTING</td>
<td>SOIL</td>
<td>31</td>
<td>2.00</td>
<td>418.1</td>
</tr>
<tr>
<td>PET HYDROCARBON (IR)</td>
<td></td>
<td>MG/KG</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETECTION LIMIT AS INDICATED.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*** THIS IS A FINAL REPORT. ***
FINAL REPORT

SOIL

<table>
<thead>
<tr>
<th>TESTS</th>
<th>RESULTS</th>
<th>UNITS</th>
<th>DETECTION LIMIT</th>
<th>METHOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOA SURROGATE STUDIES</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SAMPLE ID:</td>
<td>10110759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,2-DICHLOROETHANE-D</td>
<td>107.</td>
<td>REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOLUENE-D</td>
<td>102.</td>
<td>REC.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROMOFLUOROBENZENE</td>
<td>102.</td>
<td>REC.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

METHOD SUMMARIES

VOLATILE ORGANIC ANALYSIS IS PERFORMED USING H/P 5995 OR 5970 GC/MS, TECKMAR PURGE AND TRAP AND ALS AUTOSAMPLER. CHROMATOGRAPHY INCORPORATES PACKED AND MEGABORE COLUMNS. DATA REDUCTION IS PERFORMED ON RTE 1000 AND CHEMSTATION SYSTEMS. TUNING IS BASED ON BFB STANDARDS. PROCEDURAL GUIDELINES FOLLOW EPA 624 OR SW846 FOR ALL ANALYSIS. AROMATIC VOLATILES LISTED IN VOA 8020 ARE ANALYZED USING GC/MS SYSTEMS.

TOTAL PETROLEUM HYDROCARBONS ARE PERFORMED BY FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) USING BIORAD FTS-7 SYSTEM. SAMPLES ARE EXTRACTED IN FREON AND SUBSEQUENTLY TREATED WITH SILICA GEL (TO REMOVE VEGATABLE/ANIMAL FATS) BEFORE MEASUREMENT. 10 AND 100 MM SAMPLES CELLS ARE ROUTINELY USED TO PROVIDE NECESSARY DETECTION LIMITS.

REFERENCES

2. METHODS FOR CHEMICAL ANALYSIS OF WATER AND WASTES. EPA 600/4-79-200. REVISED MARCH 1983.

*** THIS IS A FINAL REPORT. ***
Appendix D

EDR Report
Toxicheck®

A Service of
Environmental
Data
Resources, Inc.

EDR RADIUS MAP™
REPORT

Gilbert & Bennett-RFA
N. Main St.
Georgetown, CT 06829

June 16, 1993

Inquiry Number: 28328-1

The Source
For Environmental
Risk Management
Data

3530 Post Road
Southport, Connecticut 06490
FAX 1(800) 231-6802

Nationwide Customer Service
1(800) 352-0050
WHAT IS THE EDR RADIUS MAP™ REPORT?

The EDR RADIUS MAP™ Report is a screening tool which maps sites with potential or existing environmental liabilities within 1 mile of a target property. Specified government databases are searched in accordance with the upcoming ASTM Standard (E50.02.2) or custom specifications provided by the user. Standard environmental sources identified and search distances are determined in accordance with Section 7.2.1 of the ASTM Standard. The pages following this outline list the databases and update dates used for this report. Detailed site-specific information is provided for the target property and NPL sites (EDR RADIUS MAP/PLUS™ Report only). Finally, a working map is provided to assist the user in locating sites that cannot currently be geocoded (assigned a latitude/longitude) with sufficient accuracy to be placed on the computer-generated primary maps.

The EDR RADIUS MAP™ Report is divided into three main sections:

SECTION 1. - PRIMARY MAPS

Primary Maps contain those sites which could be geocoded to either a Block Face accuracy level or those whose locations have been verified by EDR using independent sources. These sites have the highest level of accuracy, i.e., within approximately 250 feet of the true geographic location at 95% and 97% confidence levels respectively. Two primary maps, along with a search summary and supporting text, are included in order to provide a clear presentation of sites.

A. Primary Map #1: This map displays a 1 mile radius around the target property. It includes sites reported in those databases specifically identified by the customer*. These databases are listed on the Primary Map Summary in Section 1.1, page 1.

B. Primary Map #2: This map displays a 1/2 mile radius around the target property. It includes sites reported in those databases specifically identified by the customer**. These databases are listed on the Primary Map Summary in Section 1.1, page 1.

(FINDS information, if available, is included throughout the report if the site is identified in another federal database.)

SECTION 2. - DETAILED SITE-SPECIFIC INFORMATION (OPTIONAL - EDR RADIUS MAP/PLUS™ ONLY)

This section provides detailed site-specific information as follows:

A. Target Property: An EDR FEDERAL SITE™ Report containing detailed environmental information for the target property (assuming the target property is included in federal records).

B. NPL Sites: EDR FEDERAL SITE™ Reports containing detailed environmental information for any NPL (Superfund) site identified in the Primary Map Section.

*The standard databases searched and search distances are those required for the proposed ASTM standard, as follows: NPL (1 mi), RCRA-TSDF (1 mi), CERCLIS (5 mi), SHWS (State Hazardous Waste Sites), (1 mi) and SWF/LS (State Landfill and/or Solid Waste Disposal Sites), (5 mi).

** The standard databases searched and search distances are those required for the proposed ASTM standard, as follows: RCRA-Generators (target property and adjoining properties), ERNS (target property only), LUST (5 mi), and UST (target property and adjoining properties).
SECTION 3 - WORKING MAP AND TEXT

EDR maintains strict geocoding quality procedures in determining whether a site can be placed on a Primary Map in Section 1. Some sites in government databases contain questionable, inaccurate or contradictory geocoding information. EDR has an ongoing national program to locate and accurately geocode all sites which do not meet these quality control criteria. These sites, known as Block Group and Orphan Sites are explained below. In the interim, EDR has included this Working Map and Text Section to enable users to plot these sites with independent, localized or otherwise obtained information. This section is organized as follows:

A. Working Map: This map displays a 1/2 mile radius around the target property and includes all available geographic attributes in the EDR computer mapping system.

B. Block Group Site List: This section identifies properties geocoded at the Block Group level. Technically, a Block Group is the population centroid of a group averaging 300 households. A site geocoded at Block Group accuracy is expected (with 90% confidence) to be located within approximately 5,300 feet of its true geographical location.

Because of the inherent inaccuracies involved, Block Group sites are identified as "within 1 mile of the target property" without a specific direction or distance from the target property identified.

C. Orphan Site List: This section identifies "orphan" sites. It contains those sites with insufficient address information such that they can only be identified as within the zip code, city, or county of a target property.

NOTES

SPILLS Data: Only federal spills to land are reported. Spills to water and air are not carried since they do not cause contamination to land. Federal spill records include the site and its address. EPA and Coast Guard data begins in 1987. DOT data begins in 1990.

EDR Identification Numbers: Every site listed in this report is accompanied by an EDR Identification Number. These numbers can be used to obtain the EDR Federal and State Site™ Reports which, if available, contain all detailed data on sites currently available to EDR.

Please Call EDR Nationwide Customer Service at 1-800-352-0050 (8am-8pm EST) with questions or comments about your report.

Thank You For Your Business!
DISCLAIMER OF EXPRESS AND IMPLIED WARRANTIES:

EDR makes no representation or warranty regarding the accuracy, quality or completeness of any services, data and other information provided by, or any other matter undertaken by, any governmental or other entity that provides data and information to the EDR network. Further, EDR takes no responsibility for any advice given to customer by EDR personnel regarding the development (including, without limitation, wording, spacing, form and completeness) of search requests and customer shall take full responsibility for the accuracy and appropriateness of all search requests.

NO WARRANTY OF MERCHANTABILITY OR OF FITNESS FOR PARTICULAR PURPOSE SHALL APPLY AND EDR SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES. ALL PRODUCTS, SERVICES, REPORTS AND OTHER MATERIALS SUPPLIED BY EDR TO CUSTOMER (THE "SERVICES") ARE FURNISHED BY EDR "AS IS", AND CUSTOMER ACKNOWLEDGES THAT EDR HAS NOT MADE AND SHALL NOT BE DEEMED TO HAVE MADE ANY REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO TITLE, VALUE, QUALITY, PERFORMANCE, ACCURACY, COMPLETENESS, COMPLIANCE WITH SPECIFICATIONS, IF ANY, CONDITION, DESIGN, OPERATION, MERCHANTABILITY OR FITNESS OF THE SERVICES FOR USE FOR PARTICULAR PURPOSES, IT BEING AGREED THAT ALL RISKS INCIDENT THERETO, OR ANY OTHER REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, ARE TO BE BORNE BY CUSTOMER. IN THE EVENT OF ANY DEFECT OR DEFICIENCY IN THE SERVICES OF ANY NATURE, WHETHER PATENT OR LATENT, EDR SHALL HAVE NO RESPONSIBILITY THERETO.

IN NO EVENT SHALL EDR BE LIABLE TO ANYONE FOR SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES TO REAL ESTATE, ENVIRONMENT, HUMAN HEALTH, GOODS OR EQUIPMENT, LOST PROFITS, DOWNTIME COSTS, LABOR COSTS, OVERHEAD COSTS OR CLAIMS OF CUSTOMER OR POLICY-HOLDERS OR CLIENTS OF CUSTOMER FOR SUCH COSTS, EVEN IF EDR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
FEDERAL RECORDS: Acronyms, Definitions, Date of Government Version in NEDIS and Date of last EDR Contact with Government.

CERCLIS
Comprehensive Environmental Response, Compensation and Liability Information System
Source: United States Environmental Protection Agency (USEPA)

CERCLIS contains information on over 34,000 sites identified by USEPA as abandoned, inactive or uncontrolled hazardous waste sites which may require cleanup. To maintain currency, EDR contacts the agency on a monthly basis.

Date of Government Version in NEDIS: 04/01/93
Date of Last EDR Contact with Government: 05/17/93

ERNS
Emergency Response Notification System
Source: United States Environmental Protection Agency (USEPA)

ERNS contains over 25,000 spill records and stores information on reported releases of oil and hazardous substances. The data are collected from spills reported to EPA and the Coast Guard (National Response Center). To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 12/31/92
Date of Last EDR Contact with Government: 04/15/93

NPL
National Priorities List (Superfund)
Source: United States Environmental Protection Agency (USEPA)

The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund program. Sites are added from the CERCLIS list according to a hazard ranking system which seeks to identify high priority sites. To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 10/15/92
Date of Last EDR Contact with Government: 05/14/93

RCRA/HWDMS
RCRA Hazardous Waste Data Management System
RCRIS
Resource Conservation and Recovery Information System
Source: United States Environmental Protection Agency (USEPA)

RCRA/HWDMS includes selective information on over 324,000 sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Records available in HWDMS will eventually be transferred to the RCRIS database. To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 06/15/92
Date of Last EDR Contact with Government: 06/08/93
STATE RECORDS SEARCHED

Acronyms, Definitions, Date of Government Version in NEDIS and Date of last EDR contact with Government.

SHWS

State Hazardous Waste Sites

State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state. To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 12/23/92
Date of Last EDR Contact with Government: 09/15/93

SWFILS

Solid Waste Facilities/Landfill Sites

SWFILS type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps (that failed to meet RCRA Section 2004 criteria for solid waste landfills or disposal sites). To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 01/29/92
Date of Last EDR Contact with Government: 04/28/93

LUST

Leaking Underground Storage Tank Incident Reports

LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state. To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version in NEDIS: 01/15/93
Date of Last EDR Contact with Government: 05/25/93

UST

Registered Underground Storage Tanks

USTs are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Information in NEDIS varies by state program. To maintain currency, EDR contacts the agency on a quarterly basis.

Date of Government Version: 01/05/93
Date of Last EDR Contact with Government: 04/12/93
SECTION 1

PRIMARY MAPS AND SEARCH RESULTS
- Indicates TARGET PROPERTY.
- Indicates environmental elements found in the NEDIS database, resulting from a search of specified databases at specified search distances.

Map locations are approximate. For further locational information where available, refer to the map legends.

TARGET PROPERTY INFORMATION

YOUR FILE NAME/LOAN ID #: Gilbert & Bennett-HPA

ADDRESS: N. Main St.
CITY/STATE/ZIP: Georgetown CT 06829
COUNTY: FAIRFIELD
LAT/LONG: 41.2597 / 73.4315 TWP: RNG: SEC:
PROPERTY CLASS: COM REPORT LEVEL: BASIC

SUBSCRIBER NAME: Malcolm Pirnle
ATTN: Evelyn Gallagher
ACCOUNT NUMBER: 1021861
INQUIRY NUMBER: 28328-1
DATE OF INQUIRY: 06/14/1993

The information on this page is not complete without reference to the cover letter in the front of this report.

Copyright © 1990 by Environmental Data Resources, Inc. Southport, Connecticut. Patent Pending
TOXICHECK is a trademark of Environmental Data Resources, Inc., registered with the U.S. Office of Patents and Trademark
- Indicates TARGET PROPERTY.

- Indicates environmental elements found in the NEDIS database, resulting from a search of specified databases at specified search distances.

Map locations are approximate. For further locational information where available, refer to the map legends.

TARGET PROPERTY INFORMATION

YOUR FILE NAME/LOAN ID #: Gilbert & Bennett-RFA

ADDRESS: N. Main St. SUBSCRIBER NAME: Malcolm Pirnie
CITY/STATE/ZIP: Georgetown CT 06829 ATTN: Evelyn Gallagher
COUNTY: FAIRFIELD ACCOUNT NUMBER: 1021861
LAT/LONG: 41.2597 / 73.4315 TWP: RNG: SEC:
PROPERTY CLASS: COM REPORT LEVEL: BASIC

DATE OF INQUIRY: 05/14/1993

The information on this page is not complete without reference to the cover letter in the front of this report.

Copyright © 1990 by Environmental Data Resources, Inc. Southport, Connecticut Patent Pending
TOXICHECK is a trademark of Environmental Data Resources, Inc., registered with the U.S. Office of Patents and Trademark
PRIMARY MAP FINDINGS SUMMARY

<table>
<thead>
<tr>
<th>Database</th>
<th>Target Property</th>
<th>Search Dist. (Miles)</th>
<th>< 1/8</th>
<th>1/8 - 1/4</th>
<th>1/4 - 1/2</th>
<th>1/2 - 1</th>
<th>> 1</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPL</td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RCRIS-TSDF</td>
<td>X</td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State Haz. Waste</td>
<td></td>
<td>1.000</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>CERCLIS</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>State Landfill</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>LUST</td>
<td></td>
<td>0.500</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>NR</td>
<td>NR</td>
<td>2</td>
</tr>
<tr>
<td>UST</td>
<td></td>
<td>0.125</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RCRA Sm. Quan. Gen.</td>
<td></td>
<td>0.125</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>RCRA Lg. Quan. Gen.</td>
<td></td>
<td>0.125</td>
<td>0</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>HMIRS</td>
<td></td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>PADS</td>
<td></td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>ERNS</td>
<td></td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>FINDS</td>
<td>X</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>TRIS</td>
<td>X</td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
<tr>
<td>TSCA</td>
<td></td>
<td>TP</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
<td>0</td>
</tr>
</tbody>
</table>

TP = Target Property
NR = Not Requested at this Search Distance
* Sites may be listed in more than one database
PRIMARY MAP REPORT FINDINGS

<table>
<thead>
<tr>
<th>Site</th>
<th>Database Name(s)</th>
<th>Approximate Distance From Target Property (miles)</th>
<th>Direction From Target Property</th>
<th>Geocoding Accuracy Flag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>GILBERT & BENNETT MFG. CO. NORTH MAIN ST., GEORGETOWN CT 06829 EDR ID: 1000163032 EPA ID: CTD001162775</td>
<td>FINDS TRIS RCRIS-TSDF</td>
<td>Target Property</td>
<td>Block Face</td>
</tr>
</tbody>
</table>

Other Pertinent Environmental Activities Identified at Site:
- facility has an emission permit under the Clean Air Act
- facility is involved with pesticide/toxic substances production

A
- **ROSE RESIDENCE**
 - 27 MOUNTAIN RD.
 - WILTON CT 06897
 - EDR ID: S100359418

- **ROSE RESIDENCE**
 - 27 MOUNTAIN RD.
 - WILTON CT 06897
 - EDR ID: S100006353

LUST
- Date Spilled: 09/29/89
- Date Cleaned: Not Avail

TC29328-1

Section 1.2
Page 1 of 1
SECTION 2
EDR FEDERAL SITETM REPORT ON THE TARGET PROPERTY
AND NPL (SUPERFUND) SITES IN PRIMARY MAP SECTION

OPTIONAL

(Included in EDR RADIUS MAP/PLUSTM only)
SECTION 3

WORKING MAP AND TEXT
Map locations are approximate. For further locational information where available, refer to the map legends.

TARGET PROPERTY INFORMATION

YOUR FILE NAME/LOAN ID #: Gilbert & Bennett-RFA

ADDRESS: N. Main St
CITY/STATE/ZIP: Georgetown CT 06829
COUNTY: Fairfield

LAT/LONG: 41.2597 / 73.4315
TWP: RING: SEC: PROPERTY CLASS: COM REPORT LEVEL: BASIC

SUBSCRIBER NAME: Malcolm Plume
ATTN: Evelyn Gallagher
ACCOUNT NUMBER: 1021861
INQUIRY NUMBER: 28328-1
DATE OF INQUIRY: 06/14/1993

The information on this page is not complete without reference to the cover letter in the front of this report.

Copyright © 1990 by Environmental Data Resources, Inc. Southport, Connecticut Patent Pending

TOXCHECK is a trademark of Environmental Data Resources, Inc., registered with the U.S. Office of Patents and Trademark
EMPTY ROOM BETWEEN LABORATORY AND 6F

STONE CULVERT UNDER 6F

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835–05–0
STORAGE AREA
NORTH OF WELDING AREA

STORAGE AREA
NORTH OF WELDING AREA

BASEMENT OF
STORAGE AREA
NORTH OF WELDING BUILDING

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835–05–0
OMSA BUILDING

REPORTED DIESEL TANK LOCATION NORTH OF OMSA BUILDING

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10-12, 1993
1835-05-0
BOILER ROOM

DISRUPTED FLOOR IN BOILER ROOM

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835–05–0
TRAIN TRACKS IN NEW WAREHOUSE

NEW WAREHOUSE

OUTSIDE NEW WAREHOUSE FORMER UST REMOVED STAGING AREA

GILBERT & BENNET VISUAL SITE INSPECTION AUGUST 10-12, 1993 1835-05-0
NEUTRALIZATION/EQUALIZATION TANK

NEUTRALIZATION/EQUALIZATION TANK

GILBERT & BENNETT
VISUAL SITE
INSPECTION
AUGUST 10-12, 1993
1835-05-0
FORMER WASTE OIL STORAGE AREA

FORMER WASTE STORAGE AREA

OIL BERM IN NORWALK RIVER

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835–05–0
RIVER BANK SEEPAGE

MILL YARD AREA

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835–05–0
FORMER LOCATION OF "FITCHBERG ENGINE & REX CHEMICALS ON WHEELS" BUILDING

OUTSIDE ROD STORAGE SHED

NORWALK RIVER

GILBERT & BENNETT VISUAL SITE INSPECTION AUGUST 10-12, 1993 1835-05-0
DUST CONTROL VENTS OUTSIDE FABRIC GALVANIZING AREA (PAN #3)

MILL YARD AREA

GILBERT & BENNETT VISUAL SITE INSPECTION AUGUST 10–12, 1993 1835–05–0
MILL YARD AREA
FORMER "VITRIOL TANK" LOCATION

OUTSIDE ROD STORAGE SHED

GILBERT & BENNETT
VISUAL SITE INSPECTION
AUGUST 10–12, 1993
1835—05—0